Solutions for Precious Metals
Calculate the following, based on your actual alloy chemistry:
Application Examples
Castability of Pt-base Alloys
Castability of traditional platinum jewelry alloys can suffer if the solidification temperature range is too narrow. An additional challenge is the need to limit the alloy content to maintain the value and noble properties of the jewelry. Thermo-Calc can be used to calculate the non-equilibrium solidification behavior of such alloys and investigate the effect of composition using the included Scheil Solidification Simulation Calculator.
In this example, it is shown that the addition of Co to a Pt-Ru alloy can increase the solidification temperature range leading to improved form-filling during casting. Thermo-Calc can also be used to predict the extent of microsegregation, although in this work, Klotz et al. found no pronounced segregation of platinum for the Pt-1.5Ru3.5Co alloy (recalculated from Klotz, et al., Johnson Matthey Technol. Rev., 2015, 59, (2), 132–14).
Improving Casting Design of Platinum-Copper Alloys
Platinum-copper alloys are commonly used in jewelry making. This alloy system provides for good workability and machining characteristics. However, casting can be difficult. To improve casting design, thermophysical properties such as density, thermal expansion, and heat capacity are often needed as inputs to casting simulation software. Thermo-Calc can be used to provide such properties to investigate the influence of composition and temperature.
In this figure, Thermo-Calc was used to calculate the density of Pt-Cu alloys as a function of Cu content for two temperatures. As shown in the figure, the results correlate well with physical experimental measurements (experimental data from Mehmood, et al., Thermophysical Properties of Platinum-Copper Alloys. Metall Mater Trans A 43, 5029–5037 (2012).