

A new general model for diffusion controlled growth in DICTRA

Henrik Larsson, Anders Engström, Lars Höglund and Åke Jansson

Thermo-Calc Software AB, Norra Stationsg. 93, SE-113 64 Stockholm, Sweden

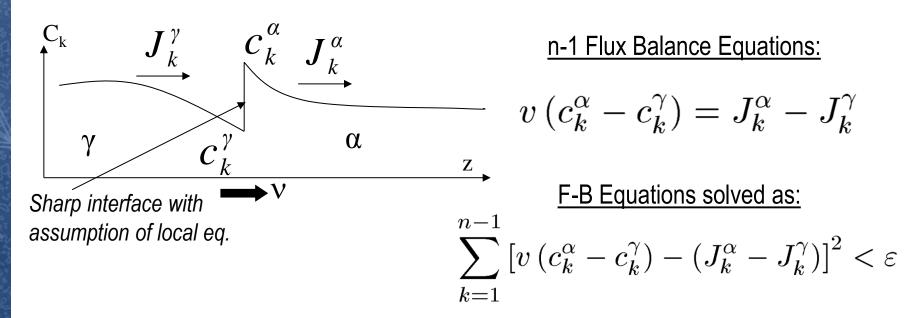
EUROMAT2013, September 8-13, 2013 · Sevilla, Spain

www.thermocalc.com

Background and motivation

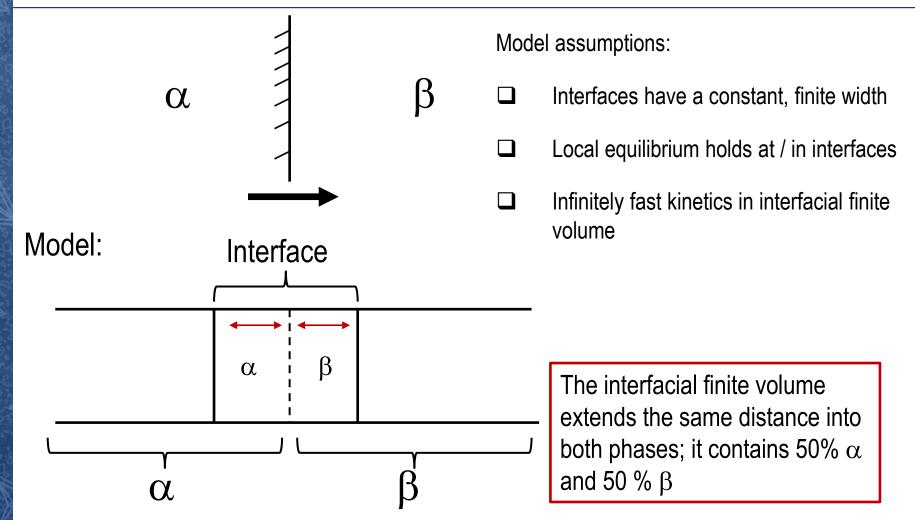
A Thermo-Calc Software

DICTRA – a software package for simulating diffusion controlled transformations in 1D

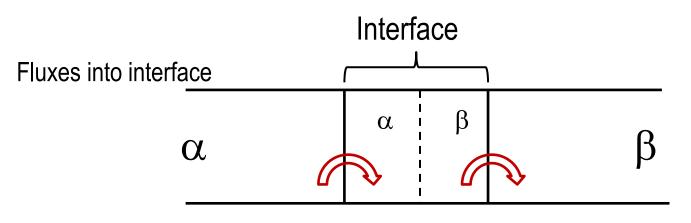


- Multiple phases was not allowed on either side of an interface
- Moving phase boundary problems are sometimes sensitive to starting values

The purpose of the new model is to generalize the software and increase the numerical robustness.



Conceived sequence of events leading to interface migration

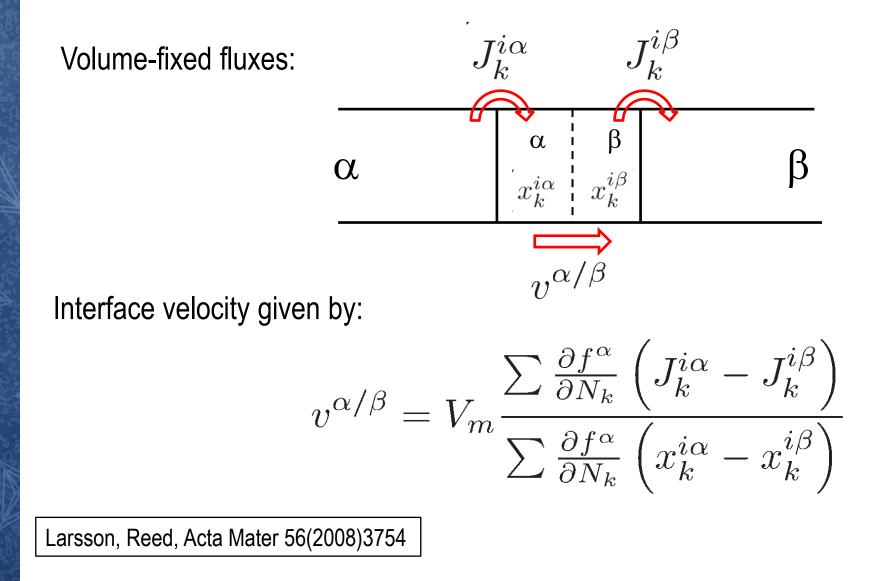


Instantaneous redistribution inside interface to maintain equilibrium

	αβ	
α		β

The interface finite volume is dragged along convectively

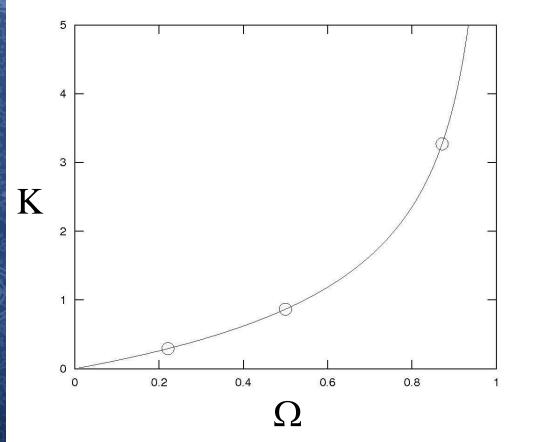
α		β
---	--	---

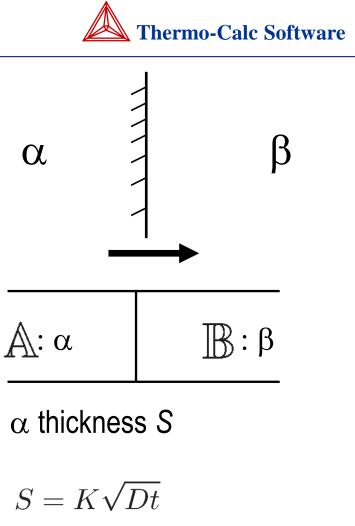


Validation – analytical case

Binary system, ideal solutions Growth of α from supersaturated β

Circles: simulation Line: analytical solution





$$K = \frac{2}{\sqrt{\pi}} \Omega \frac{\exp\left(-K^2/4\right)}{\left(1 - \operatorname{erf} K/2\right)}$$
$$\Omega = \frac{c^{\beta} - c^{\infty}}{c^{\beta} - c^{\alpha}}$$

Comparison of models

"Classic" DICTRA moving phase boundary model

Sharp (zero width) interface

Find state at interface by solving set of flux balance equations

$$v \left(c_k^{\alpha} - c_k^{\gamma} \right) = J_k^{\alpha} - J_k^{\gamma}$$
$$k = 1, \dots, n - 1$$

Finite element method (FEM)

Fast and efficient

Robust

Automatic switching between the models implemented

New model

Finite width interface

Explicit expression for interface velocity

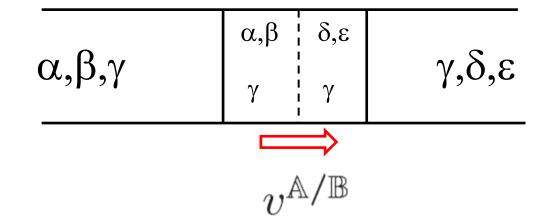
Finite volume method (FVM)

Generalize

Three sets of phases:

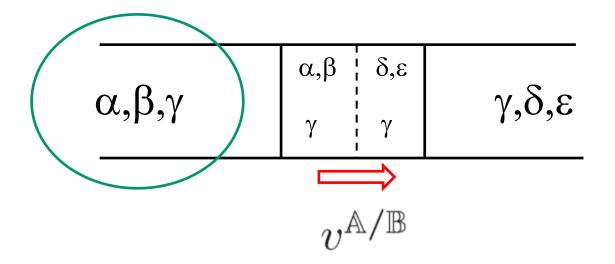
- $A: \alpha, \beta$ Allowed only on the left side of the interface
- $\mathbb{B}: \delta, \epsilon$ Allowed only on the right side of the interface
- \mathbb{C} : γ Allowed on both sides of the interface





Interface velocity given by:

$$\frac{v^{\mathbb{A}/\mathbb{B}}}{V_{S}} = \frac{\sum_{\alpha \in \mathbb{A}} \sum_{k} \frac{\partial f^{\alpha}}{\partial N_{k}} \left[J_{k}^{i\mathbb{A}}A\left(z^{i\mathbb{A}}\right) - J_{k}^{i\mathbb{B}}A\left(z^{i\mathbb{B}}\right) \right] - \sum_{\delta \in \mathbb{B}} \sum_{k} \frac{\partial f^{\delta}}{\partial N_{k}} \left[J_{k}^{i\mathbb{A}}A\left(z^{i\mathbb{A}}\right) - J_{k}^{i\mathbb{B}}A\left(z^{i\mathbb{B}}\right) \right]}{\sum_{\alpha \in \mathbb{A}} \sum_{k} \frac{\partial f^{\alpha}}{\partial N_{k}} \left[u_{k}^{i\mathbb{A}}A\left(z^{i\mathbb{A}}\right) - u_{k}^{i\mathbb{B}}A\left(z^{i\mathbb{B}}\right) \right] - \sum_{\delta \in \mathbb{B}} \sum_{k} \frac{\partial f^{\delta}}{\partial N_{k}} \left[u_{k}^{i\mathbb{A}}A\left(z^{i\mathbb{A}}\right) - u_{k}^{i\mathbb{B}}A\left(z^{i\mathbb{B}}\right) \right]}$$

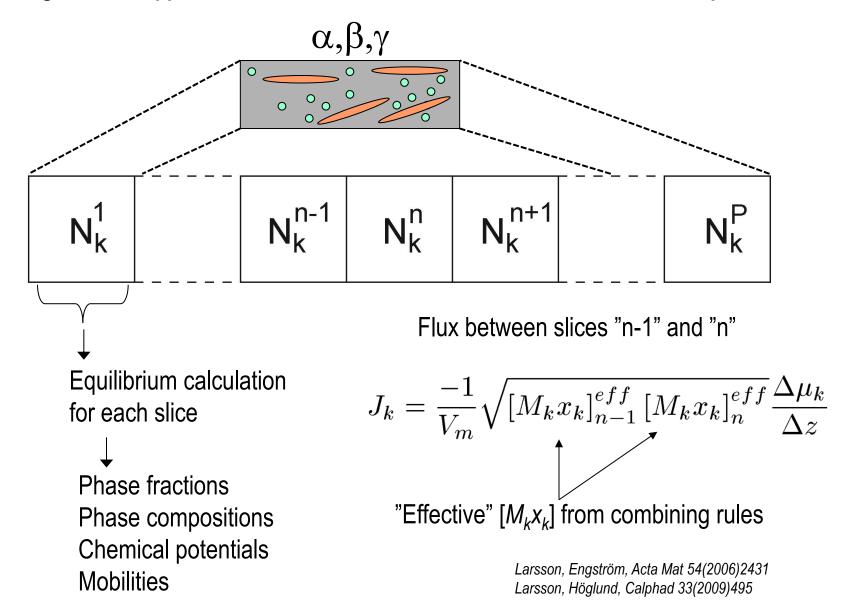


Interface velocity given by:

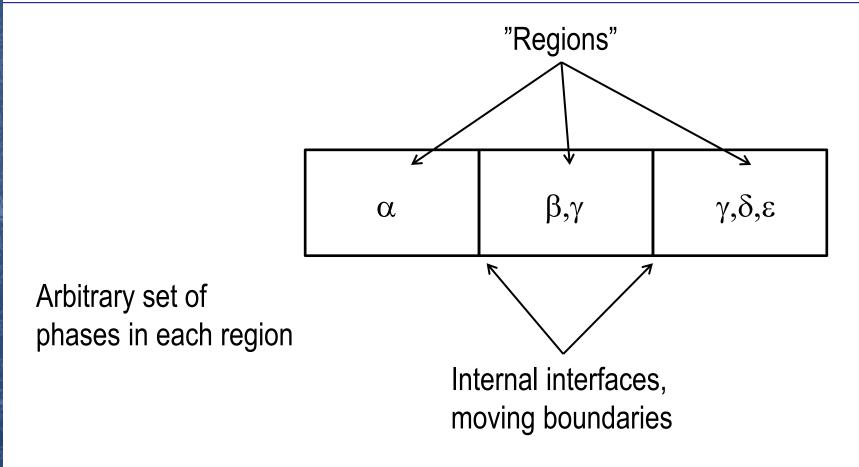
$$\frac{v^{\mathbb{A}/\mathbb{B}}}{V_{S}} = \frac{\sum_{\alpha \in \mathbb{A}} \sum_{k} \frac{\partial f^{\alpha}}{\partial N_{k}} \left[J_{k}^{i\mathbb{A}}A\left(z^{i\mathbb{A}}\right) - J_{k}^{i\mathbb{B}}A\left(z^{i\mathbb{B}}\right) \right] - \sum_{\delta \in \mathbb{B}} \sum_{k} \frac{\partial f^{\delta}}{\partial N_{k}} \left[J_{k}^{i\mathbb{A}}A\left(z^{i\mathbb{A}}\right) - J_{k}^{i\mathbb{B}}A\left(z^{i\mathbb{B}}\right) \right]}{\sum_{\alpha \in \mathbb{A}} \sum_{k} \frac{\partial f^{\alpha}}{\partial N_{k}} \left[u_{k}^{i\mathbb{A}}A\left(z^{i\mathbb{A}}\right) - u_{k}^{i\mathbb{B}}A\left(z^{i\mathbb{B}}\right) \right] - \sum_{\delta \in \mathbb{B}} \sum_{k} \frac{\partial f^{\delta}}{\partial N_{k}} \left[u_{k}^{i\mathbb{A}}A\left(z^{i\mathbb{A}}\right) - u_{k}^{i\mathbb{B}}A\left(z^{i\mathbb{B}}\right) \right]}$$

Diffusion in multiphase mixtures

Homogenization approach allow us to account for diffusion in more than one phase

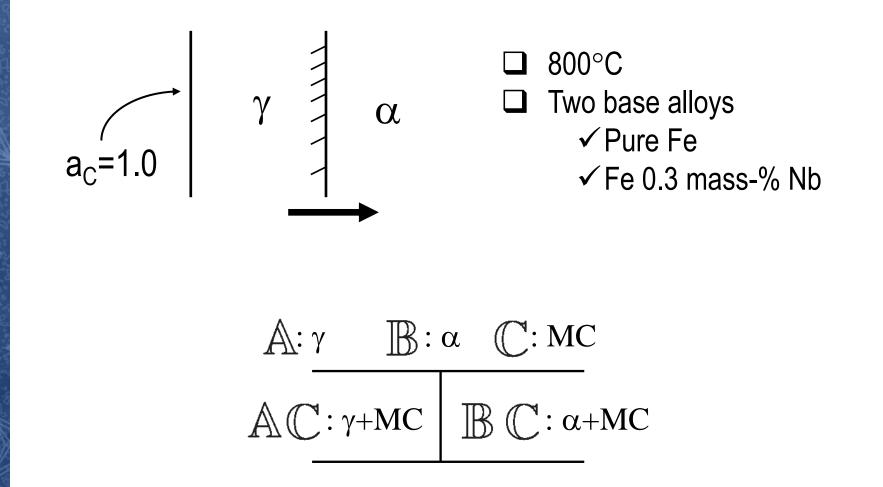


DICTRA setup using new model



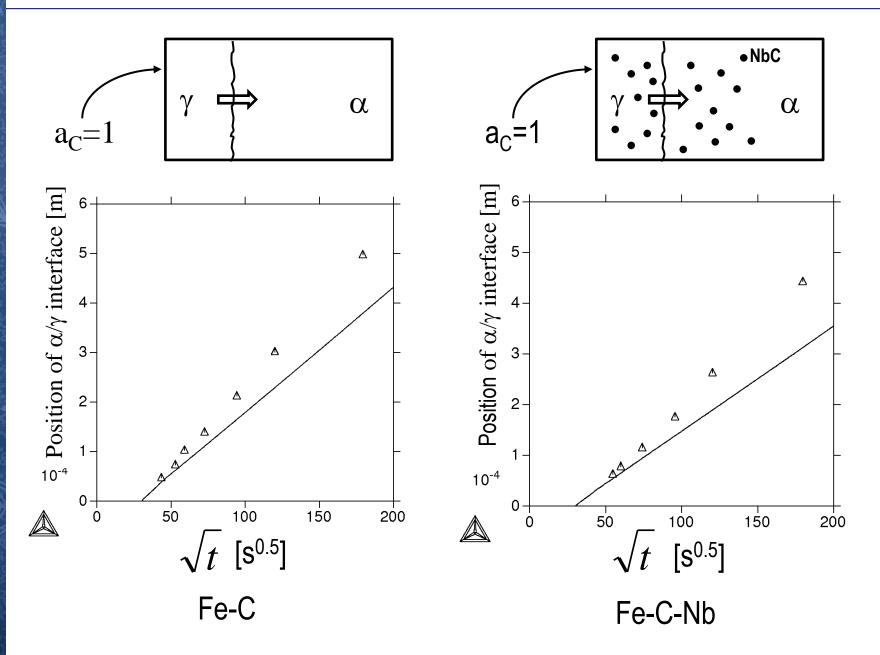
Remaining requirement: one unique phase in each region

Carburization of steel accompanied by $\alpha \rightarrow \gamma$ transformation

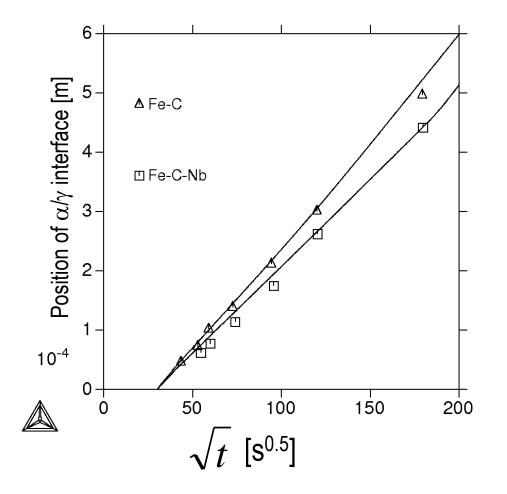


Experiments by Togashi and Nishizawa, J Japan Inst Met 40(1976)12

Carburization of steel



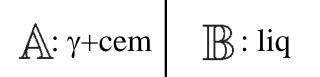
Carburization of steel

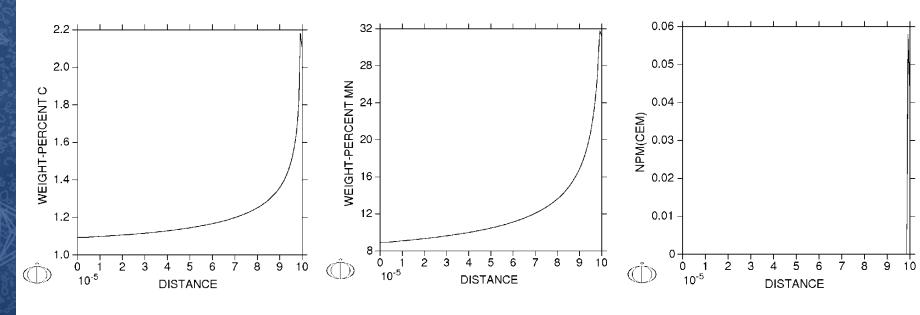


Increased mobility of carbon in austenite and ferrite by factor 2

Solidification and homogenizing

Hadfield steel Fe 1.2 C 12 Mn 100 μm domain Cooling rate 1 K/s during solidification

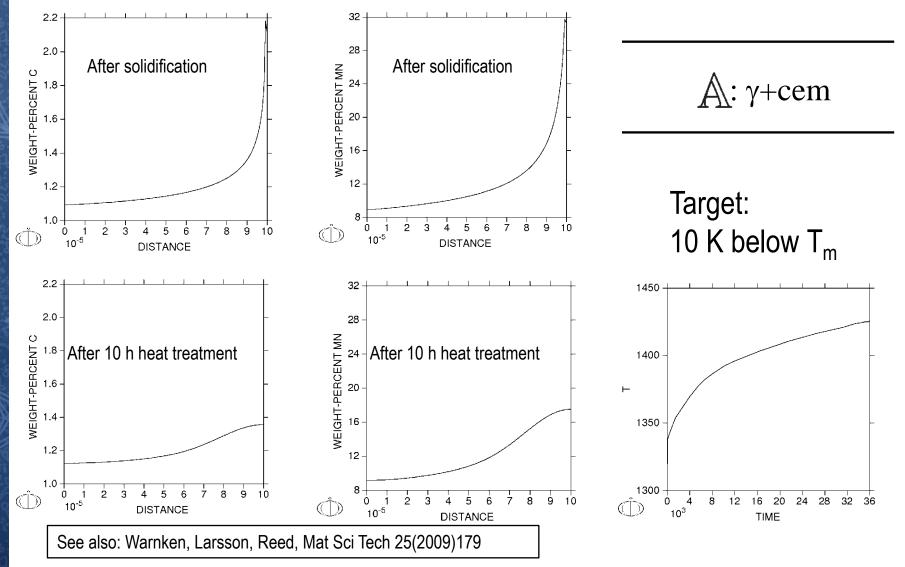




Profiles after solidification

Solidification and homogenizing

Utility: Set a target temperature as function of incipient melting temperature



Summary

Thermo-Calc Software

New moving phase boundary model implemented in Dictra

- $\checkmark\,$ More robust, but also much slower, than classic model
- \checkmark Simulations can be set up in a very general way

Thank You!

www.thermocalc.com

E-mail: info@thermocalc.