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1. Introduction: 40 years ago...

= Not much entusiasm for thermodynamic and kinetic modelling

ROYAL INSTITUTE

OF TECHNOLOGY in materials.

- CALPHAD
- Only applies to equilibrium and you never have equilibrium
In practice

- Most real materials are multicomponent but calculation of
a ternary phase diagram was a challenge both
theoretically and computationally

- Not much collaboration: the small group of individuals
active in the field each used their own model and data

- Kinetic modelling, when used, was very simple

= Experimental caracterization based on SEM and TEM was used
to study dislocations, precipitates and fracture surfaces

- The techniques we have today were known but not much
developed and were not used by materials researchers

- Most research departments at companies and universities
closed down their electron microscopy

- The technique was difficult and expensive
- They did not get enough out of it
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Today...

ROYAL INSTITUTE
OF TECHNOLOGY

< Abundance of advanced experimental techniques to
caracterize materials structure and properties.

= Abundance of advanced modelling techniques to
predict materials structure and properties.

« This iIs reflected in research initiatives like
- ICME (Integrated computational materials engineering)
- MG (Materials genome)
- 3D or 4D materials science

« Extensive industrial interest to use these methods to
solve engineering problems.

> a Renaissance in materials science and
engineering
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= Northwestern University...

NIST ...

Europe
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The first example of materials design
INn Industry using Computational
thermodynamics (H. Widmark 1990)

« In 1983 Swedish steel producer Sandvik developed a
new generation of duplex stainless steels.

- Same price level as the conventional 18/8 steel

- Twice the strength

- Better corrosion resistance

- Reduced experimental costs (2 instead of 10 years)

= Most important to have 50/50 mixture of FCC-BCC.
= Avoid TCP (e.g. sigma phase)
- Same PRE-number in both phases. PRE (Pitting

Resistance Equivalent) calculated empirically from
phase composition.
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2. ICME and the Materials Genome

: The concept of Integrated Computational Materials
Engineering (ICME) was first coined in US around 2005,
as a response ”... to the industrial need to quickly
develop durable components at the lowest cost. It has
Important potential for accelerating the development of
new materials” (Allison et al. 2006).
- Integrating;
- Materials information from different scales of length and time
- Personnel with different competencies
- Product and materials performance
- Computations

- Computational tools for covering different scales of length
and time

- Visualization
- Representation of experimental data
- Materials Engineering
- Directed towards materials of industrial importance
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A shift in Paradigm!

Materials science is not only considered from the point
of view of structure and properties, but...

IS considerered as a system for accelerating the
development of new materials.

Including

Materials properties and performance
Manufacturing and processing

Cost analysis

Uncertainties

Raw materials issues (availability, health issues...)
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! Process-Structure Modeling/Simulation

Experimental da_la Processing condition
on thermodynamics (temperature, time)
and diffusion kinetics ‘

Nucleation
Continuous-Cooling-Transformation diagram
Time-Temperature-Transformation diagram
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[ Microstructural morphology
Concentration fields
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Experiments in mechanics g Elastic/Plastic properties

> Constitutive Law Stress fields
‘ | Plastic strain fields
Experiments in heat transfer Thermal mechanical modeling (o oo y

From: W. Xiong and G.B. Olson 2015

Computational Thermodynamics and

Kinetics Seminar Excellence — Relevance - Availability ,;"hero-m

Stockholm 16 June 2016



Calphad method as a role model for
materials genomic databases

OF TECHNOLOGY

« Rigorous and self consistent thermodynamic analysis
= Models to calculate Gibbs energy of each phase in a system

= Equilibrium state may be calculated for fixed composition
pressure and temperature of a system

= Equilibrium state may be calculated also for other
conditions

= Constrained equilibria (some order parameters frozen in)
- Stable and metastable phase diagrams
- Projections and sections

= Driving forces for non-equilibrium states
- Simulation of diffusion
- Phase-field simulations
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CALPHAD is the first materials
genome because it is ...

= the most efficient way of integrating various pieces of
iInformation of quite different character into a coherent
and useful form.

- extendable far beyond the traditional thermochemistry

e increasingly being used outside the traditional
CALPHAD community

A major enabling technology in Materials science
and engineering.
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Genomic database for diffusion

 Multicomponent systems: many diffusion coefficients!

e Various type of coupling effects may make it more
complicated than Fick’s law.

< A CALPHAD-type of approach was suggested for
information on diffusion kinetics (Andersson-Agren
1992)
- Allowed systematic representatation of the kinetic

behaviour of multicomponent alloy systems.

« DICTRA was developed in the 1990s for numerical
solution of multicomponent diffusion problems in
simple geometries.
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OF TECHNOLOGY

Statement of a materials design problem

- What is the application?
- Market?
- Requirements?

= The application requires a certain performance
- The performance is defined by a number of properties
- Properties can be measured
- Not always trivial to translate performance into properties
- Cost and price important properites!

* Properties of a material can often be predicted from
Its composition and processing,

- sometimes with very high precision and sometimes at
least approximately.

- Sometimes one has to rely on emprirical relations without
understanding.

- But...
- Production of the material, cost?
- Aging — how does the performance change during usage”?
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The problem is to design a material that fullfills the
performance requirements for one or several given
applications, i.e. to determine alloy composition and
processing conditions for this material, i.e. the recipe.
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We thus need a set of models

e Translator, models that predict the properties from
the microstructure e.g.

- mechanical properties like yield stress, strain hardening
etc

wear resistance
oxidation resistance at elevated temperatures
corrosion properties, e.g. PRE-number

e Creator, models to predict the microstructure from
processing e.g.
- dendrite arm spacing
- micro segregation
- grain size distributions
- particle size distributions
- phases and their composition
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4. Multiscale modeling
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Some Common Software Input-Output Relationships

Quantum/Atomistics Microstructural Evolution and Evelving Macroscale
Angstroms (A) Material Response Scale Meters (m)

|
OFT Codes | ooF

_—_7!

FEM Codes

II

CAD Codes
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4.1 Atomistic modeling
DFT & MD

ROYAL INSTITUTE
OF TECHNOLOGY

Quantum and Atomistic Length Scale

Model Implementation Approach Property Prediction

Quantum Monte Kinetic Monie

| Carlo (QMC) Carlo (KMC)
Density

: Dynamics (MD)

-
! e

Defect
Interactions
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4.2 Mesoscale modeling
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Microstructural Evolution and Materials
Response Length Scale

Fundamental Microstructural Implementation o
Properties/Parameters Approach (Model Type) utputs

Scale Bridging
ERME B to get Materials
i\ Response

Materials Response
Implementation
Approaches, such
as:
= Discrete Dislocaion
Chymissmics
« Crystal Plasficity
= Direct Mumerical
Sirmiaions on SVEs

- Toughness

(Solidification) e
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5. Examples:
5.1 Gradient formation in cemented carbides

Diffusion in the liquid Co binder of cemented carbides: Ab
Initio molecular dynamics and DICTRA simulations

- Martin Walbruhl (2015)
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Cemented Carbides

ROYAL INSTITUTE

orreemoosy o \\ear resistant & high in
hardness

« Powder metallurgy
(liquid-phase-sintering)

Binder phase: Co

Secondary hard phase:
FCC -= e.g. Ti(C,N)
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Tools are coated (architectured) and a structure gradient
below the coating is beneficial!

Predicting gradient formation — diffusion in liquid binder
Diffusion is not accurately described in the liquid

- Surface

-Bulk

FCC phase

Method

- Calculate the diffusion parameters for Co, W, Ti, C & N with
Ab initio Molecular Dynamics (AIMD)

- Simulate gradient formation with DICTRA using these parameters
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The homogenization model in DICTRA

« Two step calculation
- Diffusion step
- Thermodynamic equilibrium

N-gas
(Vacuum) wce FCC

« N activity 10~1*

« FCC and WC as
dispersed particles

Binder

FCC-free zone
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Kinetic modeling
- Mobility data by DFT
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Gradients
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5. Examples:
AT 5.2 Phase field

Decomposition in Fe-Cr based ferritic steels

Time: 1819

Malik, KTH 2015
Phase field simulation on phase
separation in stainless steels
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2D phase-field simulation of sigma-phase formation in duplex
Stainless steel (SAF 2507)

Fe-25Cr-7Ni-4Mo with continuous cooling from 1273K to 950K

Time = 0.0
A Malik et al. 2015 Temp = 1273.00 K
(on-going work)

Full CALPHAD Thermodynamics
DICTRA Mobilities

Sigma

Austenite: 60.44
Ferrite: 38.45
Sigma: 0.73

Computational Thermodynamics and
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5. Examples:
5.3 Modelling of oxidation

Understand and predict oxidation (e.g. in steels,
superalloy bond coates):

- Rate of oxidation
- Morphology internal/external oxidation
- What oxides form
- Porosity
as function of
- alloy content
- external conditions
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Equilibrium calculations take us quite far...
Ni-2 mass% Al at 1200 °C (TCFE7)

ROYAL INSTITUTE
OF TECHNOLOGY
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Growth of oxides controlled by
diffusion

OF TECHNOLOGY

Metal o

xMe+yO->Me,O, Atmosphere with O,

xMe+yO->Me,O,,

- Oxygen diffusion in the oxide layer gives inward growth
- Metal diffusion in the oxide layer gives outward growth
- Internal oxidation needs oxygen diffusion into the metal, i.e.

Oxygen diffusion through the oxide scale and the metal
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OF TECHNOLOGY

Defect based models of diffusion In
oxides

Vacancy mechanism operative on different sublattices. The defect
structure, the vcancy content, calculated from CALPHAD

databases, and the mobility parameters are stored in mobility
databases.

Generalization the Wagner model!

Account for type A grain-boundary diffusion.
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Example of recent work

« S. Hallstrom et al. (2011)

- Fe-O (Sundman thermodynamic assessment 1991)
Wistite, Magnetite, Hematite

- Cr-O (Taylor and Dinsdale thermodynamic assessment
1990,1993)

- E. Moore et al. (2013)

- U-O (Guéneau et al. thermodynamic assessment 2011)
< R. Naraghi et al. (on-going)

- Fe-0O, Co-0...
< H. Larsson et al. (on-going)

- Internal oxidation of Ni-Al alloy (TCFE7 database)
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Simulation of oxidation of iron using the
homogenization model

Kirkendall porosity
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Simulation of oxidation of iron using the
homogenization model
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6. Conclusions

OF TECHNOLOGY

- Multiscale modelling towards useful engineering tools
= Mix of increasingly advanced models

e Large scale simulations based on thermodynamic and
kinetic properties of real engineering materials
- Databases
- Experimental raw data, (Big Data)
- High throughput experimentation
- High quality genomic databases
- High throughput assessment

« CALPHAD-type modelling for polymeric system?
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