# **Graphical Mode Examples Guide**

# **Thermo-Calc Version 2019a**





Copyright 2019 Thermo-Calc Software AB. All rights reserved.

Information in this document is subject to change without notice. The software described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the terms of those agreements.

Thermo-Calc Software AB Råsundavägen 18, SE-169 67 Solna, Sweden +46 8 545 959 30 documentation@thermocalc.com www.thermocalc.com

# Contents

| Graphical Mode Examples Guide 1       |
|---------------------------------------|
| About the Graphical Mode Examples 1   |
| Watch the Video Tutorials 1           |
| Opening a Project File 2              |
| Thermo-Calc Graphical Mode Examples 3 |
| Property Model Calculator Examples24  |
| Diffusion Calculator Examples         |
| Precipitation Calculator Examples58   |

# **About the Graphical Mode Examples**

Graphical Mode examples are available for Thermo-Calc and the add-on Diffusion Module (DICTRA) and Precipitation Module (TC-PRISMA). These are in the format of project files (\*.tcu).



÷Ω

Also search the online help for "Opening Graphical Mode Project Files", which is in the *Thermo-Calc User Guide*.

This guide includes the example descriptions and information about how to open a Graphical Mode *project* file.

# Watch the Video Tutorials

Many of the Graphical Mode examples have video tutorials available both on <u>our website</u> and our <u>YouTube channel</u>.

You can go to the video tutorials when in Thermo-Calc: Help -> Video Tutorials.

# **Opening a Project File**

To open an example project file for Thermo-Calc and the add-on Diffusion Module (DICTRA) and/or Precipitation Module (TC-PRISMA):

- 1. Open Thermo-Calc.
- 2. Confirm you are in Graphical Mode. If not, click the **Switch to Graphical Mode** button.
- 3. From the main menu, select File  $\rightarrow$  or Help  $\rightarrow$  Examples Files.
- 4. The examples are divided into folders. Navigate to the folder and project file you want and double-click to open.



5. The Graphical Mode examples are stored without calculated results so you will want to run the example calculation and generate a plot or table. To do this, click the first node in the tree at the top of the **Project** window. Then right-click and select **Perform now**.



8¢8

Some add-on module examples require additional licenses to run for more than three elements.

# **Thermo-Calc Graphical Mode Examples**

This guide includes descriptions of the following examples.

| Category                                                                                                | Example number                                                                 |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Thermo-Calc including binary and ternary system examples, Scheil, the Equilibrium Calculator, plus more | T_01 to T_09                                                                   |
| Property Model Calculator Examples: General and Steel models                                            | General models: PM_G_01<br>to PM_G_03<br>Steel models: PM_Fe_01 to<br>PM_Fe_03 |
| Diffusion Calculator Examples                                                                           | D_01, D_02, D_03 (the<br>Quick Start Guide Examples)<br>D_04 to D_07           |
| Precipitation Calculator Examples                                                                       | P_01 to P_11                                                                   |

## T\_01: Calculating a Single-Point Equilibrium

This example shows the result from a single-point equilibrium calculation in the Fe-C system. It demonstrates the use of the Equilibrium Calculator and generates a Table Renderer in the **Results** window. The number of equilibrium conditions is C+2 where C is the number of components, meaning that four conditions are needed in this example:

- Temperature is 1000 K
- Pressure is 101325 Pa
- System size is 1 mole
- Mass percent carbon is 0.1%

## **PROJECT FILE AND VIDEO TUTORIAL INFORMATION**

- Folder: Thermo-Calc
- File name: *T\_01\_Single-point\_equilibrium.tcu*
- This example is included in the tutorial on our website and YouTube channel.

## TABLE RESULT

The displayed results of the calculation show that the BCC\_A2 (ferrite) and GRAPHITE phases are stable for this set of equilibrium conditions.

| Results            |               |               |                 |               | L | × |
|--------------------|---------------|---------------|-----------------|---------------|---|---|
| Table Renderer 1   |               |               |                 |               |   |   |
|                    |               |               |                 |               |   |   |
| System             |               |               |                 |               |   |   |
| Moles              | 1.00000       |               |                 |               |   |   |
| Mass               | 55.64392      | [g]           |                 |               |   |   |
| Temperature        | 1000.00000    | [K]           |                 |               |   |   |
| Total Gibbs Energy | -42141.28527  | [0]           |                 |               |   |   |
| Enthalpy           | 24706.54116   | [0]           |                 |               |   |   |
| Volume             | 7.30619E-6    | [m3]          |                 |               |   |   |
|                    |               |               |                 |               |   |   |
| Component          | Mole Fraction | Mass Fraction | Activity        | Potential     |   |   |
| с                  | 0.00463       | 0.00100       | 0.21816         | -12658.89428  |   |   |
| Fe                 | 0.99537       | 0.99900       | 0.00619         | -42278.50542  |   |   |
|                    |               |               |                 |               |   |   |
| Stable Phases      |               |               |                 |               |   |   |
|                    | Moles         | Mass          | Volume Fraction |               |   |   |
| BCC_A2#1           | 0.99609       | 55.59692      | 0.99711         | Composition 🗸 |   |   |
|                    |               |               |                 |               |   |   |
| Composition        |               |               |                 |               |   |   |
| Component          | Mole Fraction | Mass Fraction |                 |               |   |   |
| Fe                 | 0.99928       | 0.99984       |                 |               |   |   |
| с                  | 0.00072       | 0.00016       |                 |               |   |   |
|                    |               |               |                 |               |   |   |
|                    | Moles         | Mass          | Volume Fraction |               |   |   |
| GRAPHITE#1         | 0.00391       | 0.04700       | 0.00289         | Composition 🗸 |   |   |
|                    |               |               |                 |               |   |   |
| Composition        |               |               |                 |               |   |   |
| Component          | Mole Fraction | Mass Fraction |                 |               |   |   |
| С                  | 1.00000       | 1.00000       |                 |               |   |   |
| Fe                 | 0.00000       | 0.00000       |                 |               |   |   |
|                    |               |               |                 |               |   |   |
|                    |               |               |                 |               |   |   |

### *T\_02:* Stepping in Temperature in the Fe-C System

This example shows how the fractions of stable phases vary for an Fe-0.1 mass-% C alloy when the temperature is varied between 500 and 2000 K. It demonstrates the use of the Equilibrium Calculator. To allow temperature to vary, the corresponding **Axis Definition** check box is selected.

## **PROJECT FILE AND VIDEO TUTORIAL INFORMATION**

- Folder: Thermo-Calc
- File name: T\_02\_Step\_in\_temperature\_in\_Fe-C.tcu
- This example is included in the tutorial on our <u>website</u> and <u>YouTube</u> channel.

# **PLOT RESULT**



In this example, results are displayed graphically using a Plot Renderer activity.

If you want, you can use a Table Renderer to generate text results instead, as shown in this example after adding a Table Renderer to the Equilibrium Calculator and clicking **Perform**.

| Results                          |                        |                        |                          | L                      | ×        |  |  |  |  |
|----------------------------------|------------------------|------------------------|--------------------------|------------------------|----------|--|--|--|--|
| Plot Renderer 1 Table Renderer 1 |                        |                        |                          |                        |          |  |  |  |  |
| Temperature [K]                  | Amount of BCC_A2 [mol] | Amount of FCC_A1 [mol] | Amount of GRAPHITE [mol] | Amount of LIQUID [mol] |          |  |  |  |  |
| 1000.00000                       | 0.99609                |                        | 0.00391                  |                        | ~        |  |  |  |  |
| 1010.00000                       | 0.99618                |                        | 0.00382                  |                        |          |  |  |  |  |
| 1011.17630                       | 0.99620                |                        | 0.00380                  |                        |          |  |  |  |  |
| 1011.17630                       | 0.99620                | 0.00000                | 0.00380                  |                        |          |  |  |  |  |
| 1011.17630                       | 0.87367                | 0.12633                | 0.00000                  |                        |          |  |  |  |  |
| 1011.17630                       | 0.87367                | 0.12633                |                          |                        |          |  |  |  |  |
| 1020.00000                       | 0.86050                | 0.13950                |                          |                        |          |  |  |  |  |
| 1030.00000                       | 0.84335                | 0.15665                |                          |                        |          |  |  |  |  |
| 1040.00000                       | 0.82359                | 0.17641                |                          |                        |          |  |  |  |  |
| 1050.00000                       | 0.80085                | 0.19915                |                          |                        |          |  |  |  |  |
| 1060.00000                       | 0.77399                | 0.22601                |                          |                        |          |  |  |  |  |
| 1070.00000                       | 0.74184                | 0.25816                |                          |                        |          |  |  |  |  |
| 1080.00000                       | 0.70282                | 0.29718                |                          |                        |          |  |  |  |  |
| 1090.00000                       | 0.65470                | 0.34530                |                          |                        |          |  |  |  |  |
| 1100.00000                       | 0.59418                | 0.40582                |                          |                        |          |  |  |  |  |
| 1110.00000                       | 0.51618                | 0.48382                |                          |                        |          |  |  |  |  |
| 1120.00000                       | 0.41250                | 0.58750                |                          |                        |          |  |  |  |  |
| 1130.00000                       | 0.26894                | 0.73106                |                          |                        |          |  |  |  |  |
| 1140.00000                       | 0.05863                | 0.94137                |                          |                        |          |  |  |  |  |
| 1142.15538                       | 0.00000                | 1.00000                |                          |                        |          |  |  |  |  |
| 1142.15538                       |                        | 1.00000                |                          |                        |          |  |  |  |  |
| 1150.00000                       |                        | 1.00000                |                          |                        |          |  |  |  |  |
| 1160.00000                       |                        | 1.00000                |                          |                        |          |  |  |  |  |
| 1170.00000                       |                        | 1.00000                |                          |                        |          |  |  |  |  |
| 1180.00000                       |                        | 1.00000                |                          |                        |          |  |  |  |  |
| 1190.00000                       |                        | 1.00000                |                          |                        |          |  |  |  |  |
| 1200.00000                       |                        | 1.00000                |                          |                        |          |  |  |  |  |
| 1210.00000                       |                        | 1.00000                |                          |                        |          |  |  |  |  |
| 1220.00000                       |                        | 1.00000                |                          |                        | <b>Y</b> |  |  |  |  |

### T\_03: Fe-C Phase Diagrams

This example shows the stable Fe-C phase diagram (stable meaning that the graphite phase is entered in the calculation). The same diagram is calculated using the Binary Calculator activity and then using a System Definer and Equilibrium Calculator.

In both cases, a Plot Renderer is used to display results. The purpose of the Binary Calculator is to simplify common calculations for binary systems. In the Equilibrium Calculator two axes are defined: *Mass percent C* and *Temperature*. An axis variable must also be an equilibrium condition.

## **PROJECT FILE AND VIDEO TUTORIAL INFORMATION**

- Folder: Thermo-Calc
- File name: T\_03\_Fe-C\_phase\_diagram.tcu
- This example is included in the tutorial on our website and our YouTube channel.

# **PLOT RESULTS**

Equilibrium Calculator Results

This shows the plot result of the System Definer and Equilibrium Calculator system.



#### Binary Calculator Results



#### T\_04: Fe-Cr-C Ternary Phase Diagram at 1000 K

This example shows a ternary phase diagram in the Fe-Cr-C system at 1000 K. Similar to example T\_03: Fe-C Phase Diagrams, the same diagram is calculated using a Ternary Calculator and then using a System Definer and Equilibrium Calculator. Two Plot Renderer activities are added to create two plots.

#### **PROJECT FILE AND VIDEO TUTORIAL INFORMATION**

- Folder: Thermo-Calc
- File name: T\_04\_Fe-Cr-C\_ternary\_phase\_diagram.tcu
- This example is included in the tutorial on our website and YouTube channel.

## **PLOT RESULTS**

#### Ternary Calculator



#### Equilibrium Calculator



Try practicing with two features on the Plot Renderer Configuration window. To toggle between a triangular and a rectangular diagram, click the **Show Triangular** button then click **Perform** to see what happens. To toggle the X and Y axis variables, click the **Switch Axes** button and then click **Perform**.

#### T\_05: Stable and the Metastable Fe-C Phase Diagrams

This example shows how to overlay results from two calculations in the same plot using the Equilibrium Calculator.

- 1. The Plot Renderer activity is first created as a successor to Equilibrium Calculator 1.
- 2. Then right-click the Plot Renderer node and select **Add predecessor** and the results from both equilibrium calculators are in the same plot. In *Equilibrium Calculator 1* the stable phase diagram is calculated and in *Equilibrium Calculator 2* the metastable phase.
- 3. The metastable diagram is obtained by deselecting the graphite phase on System Definer  $2 \rightarrow$  Phases and phase constitution tab.

| hases     |                     |              |  |
|-----------|---------------------|--------------|--|
| Status    | Name                | FEDEMO       |  |
| Entered . | BCC 42              |              |  |
| Entered   |                     |              |  |
| Entered   | DIAMOND FCC A4      |              |  |
| Entered 、 | <pre>/ FCC_A1</pre> |              |  |
| Entered   | / GAS               | $\checkmark$ |  |
| Entered   | GRAPHITE            |              |  |
| Entered   | HCP_A3              | $\checkmark$ |  |
| Entered   | KSI_CARBIDE         | $\checkmark$ |  |
| Entered   | LAVES_PHASE_C       | $\checkmark$ |  |
| Entered   |                     | $\checkmark$ |  |
| Entered   | 2 M23C6             | $\checkmark$ |  |
| Entered   | / M5C2              |              |  |
| Entered   | / M7C3              | $\checkmark$ |  |
| Entered   | CHI_A12             |              |  |
| Entered   | / M3C2              |              |  |
| Entered   | SIGMA               |              |  |

## **PROJECT FILE NAME**

- Folder: Thermo-Calc
- File name: T\_05\_Fe-C\_stable\_and\_metastable\_phase\_diagram.tcu

## **PLOT RESULT**



#### T\_06: Serially Coupled Equilibrium Calculators

Sometimes there are multiple solutions for a given set of equilibrium conditions. In other cases the equilibrium calculation does not converge. You can then aid the final calculation by, in effect, telling the software where it should start the search for the equilibrium.

This example shows how to serially couple two Equilibrium Calculator nodes together for more complex equilibrium conditions. For each calculation, the output is to a Table Renderer.

## **PROJECT FILE NAME**

- Folder: Thermo-Calc
- File name: *T\_06\_Serial\_equilibrium\_calculators.tcu*

#### **Table Renderer Results**

#### **Equilibrium Calculator 1**

In the first example, the objective is to calculate the equilibrium at 850° C where the mole fractions of the FCC A1 and BCC A2 phases are 0.5 each for an Fe-Cr-C steel with 10%

chromium. In Equilibrium Calculator 1 a simple set of equilibrium conditions (temperature, pressure, system size and composition) are used to find a carbon content where only the FCC A1 and BCC A2 phases are stable. The results from this preliminary calculation are displayed in Table Renderer 1.

| Results            |               |               |                 |              |   |
|--------------------|---------------|---------------|-----------------|--------------|---|
| Table Renderer 1   | Table Rendere | r 2 Table Ren | derer 3 Table R | enderer 4    |   |
|                    |               |               |                 |              |   |
| System             |               |               |                 |              |   |
| Moles              | 1.00000       |               |                 |              |   |
| Mass               | 55.41634      | [g]           |                 |              |   |
| Temperature        | 1123.15000    | [K]           |                 |              |   |
| Total Gibbs Energy | -52361.90905  | [1]           |                 |              |   |
| Enthalpy           | 32589.15580   | [1]           |                 |              |   |
| Volume             | 7.34406E-6    | [m3]          |                 |              |   |
| Company            | Mala Ecostian | Mass Essetian | Ambinitas       | Patantial    |   |
| component          | 0.00046       | Mass Hacuun   | ACUVICY         | 61502 01691  |   |
| C                  | 0.00040       | 0.00010       | 0.00137         | -01592.91001 |   |
| Cr                 | 0.10658       | 0.10000       | 0.00235         | -56531.30746 |   |
| Fe                 | 0.89296       | 0.89990       | 0.00387         | -51859.50665 |   |
| Stable Phases      |               |               |                 |              |   |
| otable i nases     | Moles         | Mass          | Volume Fraction |              |   |
| BCC A2#1           | 0.76777       | 42.55315      | 0.76992         | Composition  |   |
|                    |               |               |                 | ţ            | ~ |
| Composition        |               |               |                 |              |   |
| Component          | Mole Fraction | Mass Fraction |                 |              |   |
| Fe                 | 0.89183       | 0.89864       |                 |              |   |
| Cr                 | 0.10801       | 0.10133       |                 |              |   |
| с                  | 0.00016       | 0.00003       |                 |              |   |
| -                  |               |               |                 |              |   |
|                    | Moles         | Mass          | Volume Fraction |              |   |
| FCC A1#1           | 0.23223       | 12.86320      | 0.23008         | Composition  |   |
|                    |               |               |                 |              | - |
| Composition        |               |               |                 |              |   |
| Component          | Mole Fraction | Mass Fraction |                 |              |   |
| Fe                 | 0.89669       | 0.90408       |                 |              |   |
| Cr                 | 0.10185       | 0.09560       |                 |              |   |
| с                  | 0.00147       | 0.00032       |                 |              |   |
| -                  |               |               |                 |              |   |
|                    |               |               |                 |              |   |
|                    |               |               |                 |              |   |
|                    |               |               |                 |              |   |

#### **Equilibrium Calculator 2**

In Equilibrium Calculator 2 the carbon content equilibrium condition is replaced by the condition that the numbers of moles of the BCC A2 phase should be 0.5. The final result is displayed in Table Renderer 2. In this case, the final objective is to calculate the solidus temperature of an Fe-Cr-C steel with 10% Cr and 0.01% C.

| Results            |               |               |                 |              |   |
|--------------------|---------------|---------------|-----------------|--------------|---|
| Table Renderer 1   | Table Rendere | r 2 Table Ren | derer 3 Table R | enderer 4    |   |
|                    |               |               |                 |              |   |
| System             | 1 00000       |               |                 |              |   |
| Moles              | 1.00000       |               |                 |              |   |
| Mass               | 55.39810      | [9]           |                 |              |   |
| Temperature        | 1123,15000    | [K]           |                 |              |   |
| Total Gibbs Energy | -52365.69157  | [1]           |                 |              |   |
| Enthalpy           | 32827.91821   | [1]           |                 |              |   |
| Volume             | 7.32017E-6    | [m3]          |                 |              |   |
| Component          | Mole Fraction | Mass Fraction | Activity        | Potential    |   |
| C                  | 0.00088       | 0.00019       | 0.00146         | -60967.89084 |   |
| Cr.                | 0 10654       | 0 10000       | 0.00238         | -56409 41447 |   |
| Fe                 | 0.89258       | 0.89981       | 0.00387         | -51874 52376 |   |
|                    | 0.05250       | 0.05501       | 0.00307         | -51074.52570 |   |
| Stable Phases      |               |               |                 |              |   |
|                    | Moles         | Mass          | Volume Fraction |              |   |
| BCC_A2#1           | 0.50000       | 27.70824      | 0.50303         | Composition  | ~ |
| _                  |               |               |                 |              | - |
| Composition        |               |               |                 |              |   |
| Component          | Mole Fraction | Mass Fraction |                 |              |   |
| Fe                 | 0.89000       | 0.89692       |                 |              |   |
| Cr                 | 0.10982       | 0.10304       |                 |              |   |
| c                  | 0.00017       | 0.00004       |                 |              |   |
| 5                  |               |               |                 |              |   |
|                    | Moles         | Mass          | Volume Fraction |              |   |
| FCC A1#1           | 0.50000       | 27.68987      | 0.49697         | Composition  | ~ |
|                    |               |               |                 |              | * |
| Composition        |               |               |                 |              |   |
| Component          | Mole Fraction | Mass Fraction |                 |              |   |
| Fe                 | 0.89515       | 0.90270       |                 |              |   |
| Cr                 | 0.10326       | 0.09695       |                 |              |   |
| c.                 | 0.00159       | 0.00034       |                 |              |   |
| Č                  | 0.00105       |               |                 |              |   |
|                    |               |               |                 |              |   |
|                    |               |               |                 |              |   |

#### Equilibrium Calculator 3

In Equilibrium Calculator 3 the state at 2000 K is calculated and the result is displayed in Table Renderer 3.

| Results            |               |               |                 |              |        |
|--------------------|---------------|---------------|-----------------|--------------|--------|
| Table Renderer 1   | Table Rendere | r 2 Table Ren | derer 3 Table R | enderer 4    |        |
| -                  |               |               |                 |              |        |
| System             |               |               |                 |              |        |
| Moles              | 1.00000       |               |                 |              |        |
| Mass               | 55.41634      | [g]           |                 |              |        |
| Temperature        | 1123.15000    | [K]           |                 |              |        |
| Total Gibbs Energy | -52361.90905  | [0]           |                 |              |        |
| Enthalpy           | 32589.15580   | [1]           |                 |              |        |
| Volume             | 7.34406E-6    | [m3]          |                 |              |        |
| Company            | Mala Exaction | Mass Exaction | Ambinites       | Patantial    |        |
| Component          | MOLE FIALUON  | Mass Fracuon  | ACUVICY         | Fotentiar    |        |
| C C                | 0.00046       | 0.00010       | 0.00137         | -01592.91081 |        |
| Cr                 | 0.10658       | 0.10000       | 0.00235         | -56531.30746 |        |
| Fe                 | 0.89296       | 0.89990       | 0.00387         | -51859.50665 |        |
| Chable Dhases      |               |               |                 |              |        |
| Stable Phases      | M-1           |               | Halana Frankisa |              |        |
| DCC 43#4           | Moles         | Mass          | volume Fraction | 0            | _      |
| BCC_A2#1           | 0.76777       | 42.55315      | 0.76992         | Composition  | $\sim$ |
|                    |               |               |                 |              |        |
| Composition        |               |               |                 |              |        |
| Component          | Mole Fraction | Mass Fraction |                 |              |        |
| Fe                 | 0.89183       | 0.89864       |                 |              |        |
| Cr                 | 0.10801       | 0.10133       |                 |              |        |
| с                  | 0.00016       | 0.00003       |                 |              |        |
|                    |               |               |                 |              |        |
|                    | Moles         | Mass          | Volume Fraction |              |        |
| FCC_A1#1           | 0.23223       | 12.86320      | 0.23008         | Composition  | $\sim$ |
|                    |               |               |                 |              |        |
| Composition        |               |               |                 |              |        |
| Component          | Mole Fraction | Mass Fraction |                 |              |        |
| Fe                 | 0.89669       | 0.90408       |                 |              |        |
| Cr                 | 0.10185       | 0.09560       |                 |              |        |
| с                  | 0.00147       | 0.00032       |                 |              |        |
|                    |               |               |                 |              |        |
|                    |               |               |                 |              |        |
|                    |               |               |                 |              |        |

#### **Equilibrium Calculator 4**

In Equilibrium Calculator 4 the temperature equilibrium condition is replaced by the condition *Fix phase / liquid / 0.0*, meaning that liquid should be stable in an amount of zero moles, i.e. the solidus temperature. The final result is displayed in Table Renderer 4.

| Results            |               |                |                  |             |        |  |  |
|--------------------|---------------|----------------|------------------|-------------|--------|--|--|
| Table Renderer 1   | Table Render  | er 2 Table Rei | nderer 3 Table F | Renderer 4  |        |  |  |
|                    |               |                | _                |             |        |  |  |
| System             | 1 00000       |                |                  |             |        |  |  |
| Moles              | 1.00000       |                |                  |             |        |  |  |
| Mass               | 55.41634      | [9]            |                  |             |        |  |  |
| Temperature        | 1791.51760    | [K]            |                  |             |        |  |  |
| Total Gibbs Energy | -1.09463E5    | [0]            |                  |             |        |  |  |
| Enthalpy           | 59070.77313   | [0]            |                  |             |        |  |  |
| Volume             | 7.63568E-6    | [m3]           |                  |             |        |  |  |
| Company            | Mala Frantian | Mass Exaction  | Ambinites        | Patastial   |        |  |  |
| Component          |               | Mass Fraction  | Activity         | Potential   |        |  |  |
| C C                | 0.00046       | 0.00010        | 0.00012          | -1.34945E5  |        |  |  |
|                    | 0.10658       | 0.10000        | 0.00030          | -1.20950E5  |        |  |  |
| re                 | 0.89296       | 0.89990        | 0.00071          | -1.08079E5  |        |  |  |
|                    |               |                |                  |             |        |  |  |
| Stable Phases      | Malaa         | Maria          | Halana Franti    |             |        |  |  |
|                    | moles         | mass           | volume Fraction  |             |        |  |  |
| BCC_A2#1           | 1.00000       | 55.41634       | 1.00000          | Composition | $\sim$ |  |  |
|                    |               |                |                  |             |        |  |  |
| Composition        |               |                |                  |             |        |  |  |
| Component          | Mole Fraction | Mass Fraction  |                  |             |        |  |  |
| Fe                 | 0.89296       | 0.89990        |                  |             |        |  |  |
| Cr                 | 0.10658       | 0.10000        |                  |             |        |  |  |
| с                  | 0.00046       | 0.00010        |                  |             |        |  |  |
|                    |               |                |                  |             |        |  |  |
| Fixed Phases       |               |                |                  |             |        |  |  |
|                    | Moles         | Mass           | Volume Fraction  |             |        |  |  |
| LIQUID#1           | 0.00000       | 0.00000        | 0.00000          | Composition | $\sim$ |  |  |
|                    |               |                |                  |             |        |  |  |
| Composition        |               |                |                  |             |        |  |  |
| Component          | Mole Fraction | Mass Fraction  |                  |             |        |  |  |
| Fe                 | 0.88607       | 0.89447        |                  |             |        |  |  |
| Cr                 | 0.11178       | 0.10506        |                  |             |        |  |  |
| С                  | 0.00216       | 0.00047        |                  |             |        |  |  |
|                    |               |                |                  |             |        |  |  |
|                    |               |                |                  |             |        |  |  |

#### T\_07: User-Defined Functions

This example shows how to implement user-defined functions.

A series of equilibria for an Fe-Cr-C alloy are calculated by varying temperature between 500 and 3000 K. In the configuration window of the Equilibrium Calculator under the **Functions** tab, two identically meaning functions are defined, *fraction solid* and *f solid*, the values of which are plotted against temperature in two Plot Renderer activities. Functions can be entered in terms of *QuantitiesQ1*, *Q2*, *Q3* and so forth, or by using the Thermo-Calc syntax.

#### **PROJECT FILE INFORMATION**

- Folder: Thermo-Calc
- File name: T\_07\_User\_defined\_functions.tcu

## **PLOT RESULT**

This plot example shows the result of the fraction solid function.

#### Equilibrium Calculator 1 Legend option: Axis quantity 🗸 Legend style: None $\sim$ X-axis Axis variable: Temperature Kelvin $\sim$ Axis type: Linear $\sim$ Limits: 1500.0 to 1700.0 step 250.0 Automatic scaling Y-axis Axis variable: Function fraction\_solid 🗸 1-Q1 Linear Axis type: $\sim$ step 0.1 Limits: 0.0 to 1.0 Automatic scaling 1.0 0.9 0.8 0.7 fraction\_solid 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1500

Temperature [K]

### T\_08: Scheil and Equilibrium Solidification

This example shows a comparison for an Al-Si alloy solidified under full local equilibrium and under the Scheil assumptions, i.e. zero diffusion in the solidified material and infinitely fast diffusion in the liquid. The example uses the Scheil Calculator and adds a Plot and Table Renderer.

## **PROJECT FILE AND VIDEO TUTORIAL INFORMATION**

- Folder: Thermo-Calc
- File name: *T\_08\_Scheil\_and\_equilibrium\_solidification.tcu*.

For other examples of using Scheil, see our website and YouTube channel:

- Modified Austenitic Stainless Steel 18/8 Scheil Solidification Simulation
- Applications to Welding and Joining with Bonus Scheil Example

## TABLE AND PLOT RESULTS

The plot compares the mole fraction of a solid vs temperature. The table provides the data, which you can also export.



| Results                 |                  | L | × |
|-------------------------|------------------|---|---|
| Plot Renderer 1 Table R | enderer 1        |   |   |
| Mole fraction of solid  | Temperature [°C] |   |   |
| -2.22045E-16            | 654.52000        |   | ~ |
| -2.22045E-16            | 654.52000        |   |   |
| -2.22045E-16            | 654.52000        |   |   |
| 0.00105                 | 654.42400        |   |   |
| 0.16114                 | 653.42400        |   |   |
| 0.27839                 | 652.42400        |   |   |
| 0.36780                 | 651.42400        |   |   |
| 0.43812                 | 650.42400        |   |   |
| 0.49481                 | 649.42400        |   |   |
| 0.54143                 | 648.42400        |   |   |

## TO SAVE THE TABLE

There are two ways to save the table.

#### Method 1

In the Results window, right click the table and select Save As...

| Results                                 |           |            |  |  |  |  |  |
|-----------------------------------------|-----------|------------|--|--|--|--|--|
| Plot Renderer 1 Table R                 | enderer 1 |            |  |  |  |  |  |
| Mole fraction of solid Temperature [°C] |           |            |  |  |  |  |  |
| -2.22045E-16                            | 654.52000 |            |  |  |  |  |  |
| -2.22045E-16                            | 654.52000 |            |  |  |  |  |  |
| -2.22045E-16                            | 654.52000 | Copy       |  |  |  |  |  |
| 0.00105                                 | 654.42400 | Comuoli    |  |  |  |  |  |
| 0.16114                                 | 653.42400 | Copy all   |  |  |  |  |  |
| 0.27839                                 | 652.42400 | Save As    |  |  |  |  |  |
| 0.36780                                 | 651.42400 | Print      |  |  |  |  |  |
| 0.43812                                 | 650.42400 |            |  |  |  |  |  |
| 0.49481                                 | 649.42400 | Properties |  |  |  |  |  |
| 0.54143                                 | 648.42400 |            |  |  |  |  |  |

#### Method 2

- 1. In the **Project** window, click the **Table Renderer**.
- 2. In the **Configuration** window, click **Save table**.



## T\_09: Carbide Driving Force Heat Map

This is an example of using *property grid* calculations to plot the driving force for a carbide as a function of two composition variables. With the property grid calculation type, a 2D grid is generated from the two calculation axes. After the calculation is done, an equilibrium is calculated in each grid point. A Plot Renderer connected to a property grid calculator plots the z-axis property for each equilibrium as a function of the two calculation axes. The final plot can be either a heat map or a contour plot.

## **PROJECT FILE NAME**

- Folder: Thermo-Calc
- File name: T\_09\_Heat\_map\_of\_carbide\_driving\_force.tcu

#### 0.0 18.0 -0.5 16.0 -1.0 -1.5 14.0 -2.0 Mass percent Cr 12.0 -2.5 -3.0 🗟 10.0 -3.5 8.0 -4.0 6.0 -4.5 -5.0 4.0 -5.5 2.0 -6.0 0.0 -6.5 -7.0 0.0 0.2 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -7.5 Mass percent C -8.0

## **PLOT RESULT**

101.04

of M7C3

I/mo

# **Property Model Calculator Examples**

The **General models** are available to all users. To run calculations with the **Steel models** (martensite and pearlite) requires a valid maintenance license plus licenses for both the TCFE9 and MOBFE4 databases.

#### PM\_G\_01: Phase Transition

The example uses the Property Model Calculator to predict the transition temperature to the unwanted brittle Sigma phase. The example shows how the temperature is influenced by changes to a steel alloy's composition using the *uncertainty* calculation type and how to create either a *histogram* or *probability* plot.



Phase Transition Model in the *Thermo-Calc User Guide*.

### **PROJECT FILE AND VIDEO TUTORIAL INFORMATION**

- Folder: Property models>General
- File name: PM\_G\_01\_Phase\_Transition.tcu
- This example is included in the tutorial on our <u>website</u> and <u>YouTube</u> channel. Also see the video introduction to this feature.

# **PLOT RESULTS**

#### Histogram plot



#### Probability plot



Experienced users can also create custom property models for use with the Property Model Calculator.

Search for Property Model Calculator and Development Framework in the help.

#### PM\_G\_02: Coarsening and Interfacial Energy

The example uses the Property Model Calculator and both thermodynamic (FEDEMO) and kinetic (MFEDEMO) demonstration steel databases. Using a *grid* calculation type it produces these plots: a *heat map*, a *contour plot* and a *cross plot with contour* (where both the interfacial energy and coarsening rate is shown). It also creates a property diagram to show the phase fractions vs time and a 3D plot comparing the coarsening rate coefficient.

Coarsening Model and Interfacial Energy Model in the *Thermo-Calc User Guide*.

#### **PROJECT FILE AND VIDEO TUTORIAL INFORMATION**

- Folder: Property models>General
- File name: PM\_G\_02\_Coarsening\_and\_Interfacial\_energy.tcu
- This example is included in the tutorial on our <u>website</u> and our <u>YouTube</u> channel. Also see the <u>video introduction</u> to this feature.

#### **Plot Results**

-Ω·

**Coarsening rate coefficient (heat map)** 



#### Coarsening rate coefficient (3D plot)

Two different rotation angles. When viewing in Thermo-Calc you can rotate the plot.





### Coarsening rate coefficient (contour plot)

### Coarsening rate coefficient





Coarsening rate coefficient and Interfacial energy (overlayed plots)

#### Phase fractions vs T (Property diagram)

÷Ω



Experienced users can also create custom property models for use with the Property Model Calculator.

Search for Property Model Calculator and Development Framework in the help.

## PM\_G\_03: Driving Force and Interfacial Energy

The example uses the Property Model Calculator and a thermodynamic demonstration steel database (FEDEMO). Using a *grid* calculation type it produces a *contour* plot comparing the driving force and interfacial energy.

Driving Force Model and Interfacial Energy Model in the *Thermo-Calc User Guide*.

### **PROJECT FILE AND VIDEO TUTORIAL INFORMATION**

- Folder: Property models>General
- File name: *PM\_G\_03\_Driving\_force\_and\_Interfacial\_energy.tcu*
- See the <u>video introduction</u> to this feature.

## **PLOT RESULT**

#### A contour plot



#### Phase Fraction



Experienced users can also create custom property models for use with the Property Model Calculator.

Search for Property Model Calculator and Development Framework in the help.

#### PM\_Fe\_01: Fe-Cr-C Martensite with Intercritical Annealing

To run calculations with the **Steel models** (martensite and pearlite) requires a valid maintenance license plus licenses for both the TCFE9 and MOBFE4 databases.

The example uses the Property Model Calculator with the **Martensite Fractions** and **Martensite Temperatures** models.

The example shows how to calculate martensite fractions and martensite temperatures (martensite start, Ms, and 90% transformation temperature M90). The alloy is first intercritically annealed and then quenched. Austenite composition is determined by an equilibrium calculation at the annealing temperature. Martensite fraction is calculated as a function of temperature which the alloy is quenched to. The example also shows how Cr content in the alloy influences Ms and M90 after intercritical annealing.

#### REFERENCE

-Ω·

8\$

Harris, William J, and Morris Cohen. 1949. "Stabilization Of The Austenite-Martensite Transformation." *Transactions of the American Society for Metals, AIME* 180: 447–70.

#### **PROJECT FILE INFORMATION**

- Folder: Property models >Steel
- File name: PM\_Fe\_01\_Fe-Cr-C\_martensite\_intercritical\_annealing.tcu

#### **PLOT RESULT**

Transformation curves




8¢8



#### PM\_Fe\_02: Fe-Mn Martensite Morphologies

To run calculations with the **Steel models** (martensite and pearlite) requires a valid maintenance license plus licenses for both the TCFE9 and MOBFE4 databases.

The example uses the Property Model Calculator with the **Martensite Temperatures** model. It shows the Ms temperatures of different types of martensites: lath, plate, and epsilon (hcp), compared with experimental epsilon Ms values.

# **PROJECT FILE INFORMATION**

- Folder: Property Models>Steel
- File name: PM\_Fe\_02\_Fe-Mn\_martensite\_morphologies.tcu

# **PLOT RESULT**



# PM\_Fe\_03: Fe-C-Mn Pearlite

8

To run calculations with the **Steel models** (martensite and pearlite) requires a valid maintenance license plus licenses for both the TCFE9 and MOBFE4 databases.

The example uses the Property Model Calculator with the **Pearlite** model.

The example shows how to calculate pearlite growth rate, lamellar spacing, and times of start (2% transformation) and finish (98% transformation) as functions of isothermal heat treating temperature in an Fe-0.69C-1.80Mn alloy (mass %). With "maximize growth rate" as the "criterion", the model gives maximal growth rate and minimal lamellar spacing. With "optimal

pearlite" as the "pearlite mode", the model optimizes partitioning of substitutional alloying element(s) (Mn in this example) according to the "criterion", which realizes a smooth transition between ortho-pearlite at high temperature and para-pearlite at low temperature.

#### REFERENCE

Razik, N.A, G.W. Lorimer, and N Ridley. 1974. "An Investigation of Manganese Partitioning during the Austenite-Pearlite Transformation Using Analytical Electron Microscopy." Acta Metallurgica 22 (10): 1249–58. doi:10.1016/0001-6160(74)90138-2.

#### **PROJECT FILE INFORMATION**

- Folder: Property Models>Steel
- File name: PM\_Fe\_03\_Fe-C-Mn\_Pearlite.tcu

# **PLOT RESULT**

Growth Rate



# Lamellar Spacing







# **Diffusion Calculator Examples**

Examples using up to three elements are available to all users. The other examples require a Diffusion Module (DICTRA) license to calculate and plot results.



8

All examples use demonstration database packages included with your installation no matter what licenses you have.



#### D\_01 Homogenization of a Binary Fe-Ni Alloy

The single phase example simulates the diffusion of Fe and Ni at a temperature of 1400 K in a planar domain. At this temperature the material is fully austenitic, i.e. the only phase present is the so-called fcc (face centered cubic) phase. Initially, there is a linear variation in Ni going from 10 mass-% on the left-hand side to 50 mass-% on the right-hand side.



This example is available as a video tutorial on <u>our website</u> and <u>YouTube</u> <u>channel</u>. In previous versions of the software (prior to 2017b) it is example 19.

#### *Composition of Ni vs Distance*



## **PROJECT FILE NAME**

- Folder: Diffusion Module DICTRA
- File name: D\_01\_Diffusion\_Single\_Phase.tcu
- This example is part of the *Diffusion Module (DICTRA) Quick Start Guide* available to all users. A version of the example is also available for Console Mode.

## D\_02 Ferrite(bcc)/Austenite(fcc) Transformation in a Binary Fe-C Alloy

The moving phase boundary example simulates the growth of ferrite (bcc) into austenite (fcc). The austenite is assumed to be initially homogeneous with the composition Fe-0.15 mass-% C. The transformation temperature is 1050 K. The initial thickness of the austenite is 2 mm and an initially very thin ferrite (1 nm) is also present at the start of the simulation.

This example is available as a video tutorial on our website and YouTube channel.

# Position of interface vs time



#### Composition profile C



## **PROJECT FILE NAME**

- Folder: Diffusion Module DICTRA
- File name: *D\_02\_Diffusion\_Moving\_Boundary.tcu*

This example is part of the *Diffusion Module (DICTRA) Quick Start Guide* available to all users. A version of the example is also available for Console Mode.

# D\_03 Evolution of an Fe-Cr-Ni Diffusion Couple

The multiphase example simulates the evolution of an Fe-Cr-Ni diffusion couple during a 100 hour heat treatment at 1100° C (1373.15 K). Both end members of the diffusion couple are duplex ferrite plus austenite, but the majority phase is ferrite on the left-hand side and austenite on the right.

With this type of simulation it is assumed that the material is fully equilibrated at each grid point, i.e. the local phase fractions, phase compositions and so forth are obtained from an equilibrium calculation with the local overall composition as a condition.

More details about the homogenization model for multiphase simulations can be found in Larsson and Engström  $(2006)^{1}$  and Larsson and Höglund  $(2009)^{2}$ . Experimental data is from Engström  $(1995)^{3}$ .

<sup>&</sup>lt;sup>1.</sup> "A homogenization approach to diffusion simulations applied to  $\alpha + \gamma$  Fe–Cr–Ni diffusion couples", *Acta Mater.*, 54 (9), pp. 2431–2439.

<sup>&</sup>lt;sup>2.</sup> "Multiphase diffusion simulations in 1D using the DICTRA homogenization model", *Calphad*, 33 (3), pp. 495–501.

<sup>&</sup>lt;sup>3.</sup> "Interdiffusion in multiphase, Fe-Cr-Ni diffusion couples", *Scand. J. Metall.*, 24(1), 12–20.

#### Phase fraction of FCC



## **PROJECT FILE NAME**

- Folder: Diffusion Module DICTRA
- File name: *D\_03\_Diffusion\_Multiphase.tcu*
- This example is part of the *Diffusion Module (DICTRA) Quick Start Guide* available to all users. A version of the example is also available for Console Mode.

#### D\_04 Fe-C Moving Boundary: Austenite to Ferrite

This example simulates the austenite to ferrite transformation in a Fe-0.01 mass% C steel during continuous cooling. The simulation starts at a temperature where only austenite is stable, ferrite nucleates and grows into the austenite during cooling in the two phase region. Plots of thermal and carbon composition profiles are generated.

# Thermal profile



#### Carbon composition profile



# **PROJECT FILE NAME**

- Folder: Diffusion Module DICTRA
- File name: D\_04\_Diffusion\_Fe-C\_Moving\_Boundary\_Austenite\_to\_Ferrite.tcu
- This example is available to all users.

# $D_05 \gamma/\alpha/\gamma$ Diffusion couple of Fe-Ni-Cr alloys

This example demonstrates the evolution of a ternary Fe-Cr-Ni diffusion couple. A thin slice of ferrite ( $\alpha$  phase) (38%Cr,0%Ni) is clamped between two thicker slices of austenite ( $\gamma$  phase) (27%Cr, 20%Ni). The assembly is subsequently heat treated at 1373 K.

This set up corresponds to diffusion couple in Kajihara, Lim, and Kikuchi (1993)<sup>1</sup>. Also see Kajihara and Kikuchi (1993)<sup>2</sup>.



# 593.45E-6

<sup>2.</sup> "Numerical analysis of dissolution of  $\alpha$  phase in  $\gamma/\alpha/\gamma$  diffusion couples of the Fe-Cr-Ni system", *Acta Metall. Mat.*, 41(7), 2045–2059.

<sup>&</sup>lt;sup>1.</sup> "Experimental Study on Dissolution of ALPHA Phase in GAMMA/ALPHA/GAMMA Diffusion Couples of the Fe-Cr-Ni System", *ISIJ Int.*, 33(4), 498–507.



# Interface Position





# Concentration profiles at 36000 s





# Concentration profiles at 36 0000 s



# Concentration profiles at 3 600 000 s

#### Diffusion paths



# **PROJECT FILE NAME**

- Folder: Diffusion Module DICTRA
- File name: D\_05\_Diffusion\_Fe\_Ni\_Cr\_Moving\_Boundary\_Diffusion\_Couple.tcu

# D\_06 Diffusion Through a Tube Wall

This is a simple example of diffusion through a tube wall . The tube material is an Fe-0.06Mn-0.05C alloy. Two plots comparing distance to the U-fraction of manganese and composition of carbon are generated to visualize the austenite region. A *cylindrical* geometry is used with *mixed zero flux and activity* boundary conditions.

On the inside wall a carbon activity of 0.9 is maintained whereas on the outside the carbon activity is very low. This example demonstrates the use of boundary conditions, advanced plotting and tables.



This example is based on Console Mode exab6 (see in the *Diffusion Module* (*DICTRA*) Console Mode Examples Guide). When in Console Mode, you can open the example from Thermo-Calc (File  $\rightarrow$  Examples Files  $\rightarrow$  Diffusion Module).

# Composition of C vs Distance



#### U-fraction of Mn vs Distance



#### Table Composition C vs Distance



## **PROJECT FILE NAME**

- Folder: Diffusion Module DICTRA
- File name: D\_06\_Diffusion\_Carburization\_Tube.tcu

# D\_07 Multiphase Carburization of a Ni-25Cr-0.0001C alloy

This example is about carburization of a Ni-25Cr-0.0001C alloy. In this case the M7C3 and M3C2 carbides are entered as spheroid phases in an FCC\_A1 matrix. It is similar to Graphical Mode example D\_06 except the default **Simulation condition** is automatically set to use the **Homogenization** model.

The Isothermal calculation is run for 1000 hours at a temperature of 1123 K using the **Mixed zero flux and activity** left boundary condition. Results are plotted using two Plot Renderers and a Table Renderer.

This case is from Engström, Höglund, and Ågren (1994), "Computer simulation of diffusion in multiphase systems", *Met. Mat. Trans. A*, 25(6), 1127–1134.



This example is based on Console Mode exd1b (see in the *Diffusion Module* (*DICTRA*) Console Mode Examples Guide). When in Console Mode, you can open the example from Thermo-Calc (File  $\rightarrow$  Examples Files  $\rightarrow$  Diffusion Module).

This example is available as a video tutorial on our website and YouTube channel.



#### Phase fraction vs distance

# Table of Composition profiles

| Results          |            |             |                 |                              | י נ | ť – |
|------------------|------------|-------------|-----------------|------------------------------|-----|-----|
| Phase fraction v | s distance | Table Compo | sition profiles | Composition of C vs Distance |     |     |
| Distance [m]     | 1: W(C)    | 2: W(CR)    | 3: W(NI)        |                              |     |     |
| 0.00000          | 2.93966    | 24.35835    | 72.70199        |                              |     | ~   |
| 9.88104E-6       | 2.92919    | 24.27458    | 72.79623        |                              |     |     |
| 0.00002          | 2.92153    | 24.27324    | 72.80522        |                              |     |     |
| 0.00003          | 2.91543    | 24.27447    | 72.81011        |                              |     |     |
| 0.00004          | 2.90899    | 24.27584    | 72.81517        |                              |     |     |
| 0.00005          | 2.90235    | 24.27733    | 72.82032        |                              |     |     |
| 0.00006          | 2.89549    | 24.27886    | 72.82565        |                              |     |     |
| 0.00007          | 2.88841    | 24.28053    | 72.83106        |                              |     |     |
| 0.00008          | 2.88107    | 24.28222    | 72.83670        |                              |     |     |
| 0.00010          | 2.87349    | 24.28403    | 72.84248        |                              |     |     |
| 0.00011          | 2.86564    | 24.28588    | 72.84849        |                              |     |     |
| 0.00012          | 2.85750    | 24.28783    | 72.85467        |                              |     |     |
| 0.00013          | 2.84907    | 24.28984    | 72.86110        |                              |     |     |
| 0.00014          | 2.84033    | 24.29194    | 72.86773        |                              |     |     |
| 0.00016          | 2.83124    | 24.29412    | 72.87464        |                              |     |     |
| 0.00017          | 2.82181    | 24.29640    | 72.88179        |                              |     |     |
| 0.00018          | 2.81201    | 24.29877    | 72.88922        |                              |     |     |
| 0.00020          | 2.80183    | 24.30124    | 72.89693        |                              |     |     |
| 0.00021          | 2.79122    | 24.30381    | 72.90497        |                              |     |     |
| 0.00022          | 2.78018    | 24.30650    | 72.91332        |                              |     |     |
| 0.00024          | 2.76867    | 24.30930    | 72.92203        |                              |     |     |
| 0.00025          | 2.75666    | 24.31222    | 72.93112        |                              |     |     |
| 0.00027          | 2.74412    | 24.31528    | 72.94060        |                              |     |     |
| 0.00028          | 2.73101    | 24.31848    | 72.95051        |                              |     |     |
| 0.00030          | 2.71731    | 24.32182    | 72.96087        |                              |     |     |
| 0.00031          | 2.70295    | 24.32533    | 72.97171        |                              |     |     |
| 0.00033          | 2.68790    | 24.32901    | 72.98308        |                              |     |     |
| 0.00035          | 2.67210    | 24.33288    | 72.99502        |                              |     |     |
| 0.00036          | 2.65550    | 24.33694    | 73.00756        |                              |     |     |
| 0.00038          | 2.63803    | 24.34122    | 73.02075        |                              |     |     |
| 0.00040          | 2.61961    | 24.34573    | 73.03466        |                              |     |     |
| 0.00042          | 2.60016    | 24.35050    | 73.04934        |                              |     |     |
| 0.00043          | 2.57960    | 24.35554    | 73.06486        |                              | ٦.  | ¥   |

# Composition of C vs Distance



# **PROJECT FILE NAME**

- Folder: Diffusion Module DICTRA
- File name: D\_07\_Diffusion\_Carburization\_Multiphase.tcu

# **Precipitation Calculator Examples**

Examples that use up to three elements are available to all users. The other examples require a Precipitation Module (TC-PRISMA) license to calculate and plot results.



躑

All examples use demonstration database packages included with your installation. You can open the examples from the main menu: File  $\rightarrow$  or Help  $\rightarrow$  Examples Files.



Unless specified in tables for each example, all the numerical parameters are assumed default values.

# P\_01: Isothermal Precipitation of Al<sub>3</sub>Sc

This example simulates the kinetics of precipitation of  $Al_3Sc$  from an FCC\_A1 solution phase. The simulation results can be compared with experimental data collected from Marquis and Seidman<sup>1.</sup> and Novotny and Ardell (2001)<sup>2.</sup>.

This example is available as a video tutorial on our website and YouTube channel.

| System (System Definer)               |                                               |  |
|---------------------------------------|-----------------------------------------------|--|
| Database package                      | Demo: Aluminum-based alloys (ALDEMO, MALDEMO) |  |
| Elements                              | Al, Sc                                        |  |
| Conditions (Precipitation Calculator) |                                               |  |
| Composition                           | Al-0.18Sc Mole percent                        |  |
| Matrix phase                          | FCC_A1                                        |  |

<sup>&</sup>lt;sup>1.</sup> Marquis, E.A, and D.N Seidman. 2001. "Nanoscale Structural Evolution of Al3Sc Precipitates in Al(Sc) Alloys." Acta Materialia 49 (11): 1909–19.

<sup>&</sup>lt;sup>2.</sup> Novotny, Gabriel M., and Alan J. Ardell. 2001. "Precipitation of Al3Sc in Binary Al–Sc Alloys." Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing 318 (1–2): 144–54.

| Precipitate phase                                            | AL3SC                                                                                     |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Precipitate Phase Data Parameters (Precipitation Calculator) |                                                                                           |  |
| Nucleation sites                                             | Bulk                                                                                      |  |
| Interfacial energy                                           | Calculated                                                                                |  |
| Calculation Type (Precipitation Calculator)                  |                                                                                           |  |
| Calculation type                                             | Isothermal                                                                                |  |
| Temperature                                                  | 350° C                                                                                    |  |
| Simulation time                                              | 1.0E7 seconds                                                                             |  |
| Other                                                        |                                                                                           |  |
| File name and location                                       | Folder: Precipitation Module - TC-PRISMA<br>File name: P_01_Precipitation_Al-Sc_AL3SC.tcu |  |

# **Plot Results**

#### Mean radius



#### P\_02: Stable and Metastable Carbides - Isothermal

This example simulates the kinetics of precipitation of both stable and metastable carbides from ferrite phase. It demonstrates that metastable carbides (cementite, M7C3) may first emerge and then disappear and the stable phase (M23C6) prevails.

This example uses the Equilibrium Calculator and a property diagram to determine how the phases change with temperature. We are interested in the carbide precipitation at 1053K where only the carbide M23C6 is stable according to the equilibrium calculation. The Precipitation Calculator is used to do an isothermal calculation of the three phases (cementite, M23C6 and M7C3) where cementite and M7C3 are metastable phases.

| System (System Definer)                                        |                                                                                               |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Database package                                               | Demo: Steels and Fe-alloys (FEDEMO,MFEDEMO)                                                   |  |
| Elements                                                       | Fe, C, Cr                                                                                     |  |
| Conditions (Precipitation Calculator)                          |                                                                                               |  |
| Composition                                                    | Fe-0.1C-12Cr Mass percent                                                                     |  |
| Matrix phase                                                   | BCC_A2                                                                                        |  |
| Precipitate phases                                             | Cementite, M23C6 and M7C3                                                                     |  |
| Matrix Phase Data Parameters (Precipitation Calculator)        |                                                                                               |  |
| Grain size (click <b>Show details</b> to display this setting) | 1.0E-4 m                                                                                      |  |
| Precipitate Phase Data Parameters (Precipitation Calculator)   |                                                                                               |  |
| Nucleation sites                                               | Grain boundaries                                                                              |  |
| Interfacial energy                                             | Cementite 0.167 J/m <sup>2</sup> , M23C6 0.252 J/m <sup>2</sup> , M7C3 0.282 J/m <sup>2</sup> |  |
| Calculation Type (Precipitation Calculator)                    |                                                                                               |  |
| Calculation type                                               | lsothermal                                                                                    |  |
| Temperature                                                    | 1053 К                                                                                        |  |

| Simulation time        | 400 000 seconds                                                                                                |  |
|------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Other                  |                                                                                                                |  |
| File name and location | Folder: Precipitation Module - TC-PRISMA<br>File name: P_02_Precipitation_Fe-C-Cr_Cementite-M7C3-<br>M23C6.tcu |  |

# **Plot Results**

Equilibrium Calculator: How the phases change with temperature





#### Precipitation Calculator: Volume fractions

# P\_03: Stable and Metastable Carbides - TTT Diagram

In this example, the kinetics of precipitation of both stable and metastable carbides
is calculated from the ferrite phase. It demonstrates that metastable carbides may first emerge and then disappear and the stable phase prevails.

This example uses the Equilibrium Calculator and a property diagram to determine how the phases change with temperature. Using this result, the Precipitation Calculator is used to do a TTT (Time-Temperature-Transformation) diagram calculation of the three phases (cementite, M23C6 and M7C3) at the grain boundaries.

For a TTT diagram calculation, select **TTT diagram** in **Calculation Type**, then enter **Min**, **Max**, and **Step** of **Tempeature**, as well as **Max annealing time**. In **Stop criterion**, choose **Volume fraction of phase** and enter the value.

| System (System Definer) |                                                 |  |
|-------------------------|-------------------------------------------------|--|
| Database package        | Demo: Steels and Fe-alloys (FEDEMO and MFEDEMO) |  |

| Elements                                                       | Fe, C, Cr                                                                                     |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Conditions (Precipitation Calculator)                          |                                                                                               |  |
| Composition                                                    | Fe-0.1C-12Cr Mass percent                                                                     |  |
| Matrix phase                                                   | BCC_A2                                                                                        |  |
| Precipitate phases                                             | Cementite, M23C6 and M7C3                                                                     |  |
| Matrix Phase Data Parameters (Precipitation                    | n Calculator)                                                                                 |  |
| Grain size (click <b>Show details</b> to display this setting) | 1.0E-4 m                                                                                      |  |
| Precipitate Phase Data Parameters                              |                                                                                               |  |
| Nucleation sites                                               | Grain boundaries                                                                              |  |
| Interfacial energy                                             | Cementite 0.167 J/m <sup>2</sup> , M23C6 0.252 J/m <sup>2</sup> , M7C3 0.282 J/m <sup>2</sup> |  |
| Calculation Type (Precipitation Calculator)                    |                                                                                               |  |
| Calculation type                                               | TTT diagram                                                                                   |  |
| Temperature                                                    | 500° to 800° C with 25° C steps                                                               |  |
| Max. annealing time                                            | 1.0E8 seconds                                                                                 |  |
| Stop criteria                                                  | Volume fraction of phase is set to 0.0001                                                     |  |
| Options > Numerical Parameters                                 |                                                                                               |  |
| No. of grid points over one order of magnitude in radius       | 150                                                                                           |  |
| Max no. of grid points over one order of magnitude in radius   | 200                                                                                           |  |
| Min no. of grid points over one order of magnitude in radius   | 100                                                                                           |  |
| Other                                                          |                                                                                               |  |
| File name and location                                         | Folder: Precipitation Module - TC-PRISMA                                                      |  |

| File name: P_03_Precipitation_Fe-C-Cr_TTT_Cementite- |
|------------------------------------------------------|
| M7C3-M23C6.tcu                                       |

## **Plot Results**

Equilibrium Calculator: How the phases change with temperature





#### Precipitation Calculator: TTT diagram

# P\_04: Precipitation of Iron Carbon Cementite

Simulate the kinetics of precipitation of carbides from a BCC Fe solution phase. This example is based on Wert (1949)<sup>1</sup>.

This example uses two Experimental File Reader activities with the Precipitation Calculator and an isothermal calculation, to plot the volume fraction of the cementite phase.

| System (System Definer)               |                                                 |  |
|---------------------------------------|-------------------------------------------------|--|
| Database package                      | Demo: Steels and Fe-alloys (FEDEMO and MFEDEMO) |  |
| Elements                              | Fe, C                                           |  |
| Conditions (Precipitation Calculator) |                                                 |  |
| Composition                           | Fe-0.016C mass percent                          |  |
| Matrix phase                          | BCC_A2                                          |  |

<sup>&</sup>lt;sup>1.</sup> Wert, Charles A. 1949. "Precipitation from Solid Solutions of C and N in  $\alpha$ -Iron." Journal of Applied Physics 20 (10). AIP Publishing: 943.

| Precipitate phase                                                       | Cementite                                                                                   |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Matrix Phase Data Parameters (Precipitation Calculator)                 |                                                                                             |  |
| Grain aspect ratio (click <b>Show details</b> to display this setting)  | 1.0                                                                                         |  |
| Dislocation density (click <b>Show details</b> to display this setting) | 1.5e11m <sup>-3</sup>                                                                       |  |
| Precipitate Phase Parameters (Precipitation Calcula                     | tor)                                                                                        |  |
| Nucleation sites                                                        | Dislocations                                                                                |  |
| Interfacial energy                                                      | 0.24 J/m <sup>2</sup>                                                                       |  |
| Growth rate model (click Show details)                                  | Advanced                                                                                    |  |
| Calculation Type (Precipitation Calculator)                             |                                                                                             |  |
| Calculation type                                                        | lsothermal                                                                                  |  |
| Temperature                                                             | 102° C                                                                                      |  |
| Simulation time                                                         | 600 000 seconds                                                                             |  |
| Other                                                                   |                                                                                             |  |
| File name and location                                                  | Folder: Precipitation Module - TC-PRISMA<br>File name: P_04_Precipitation_Fe-C_Cemetite.tcu |  |

#### **Plot Results**

Volume Fraction



## P\_05: Precipitation of $\gamma'$ in Ni Superalloys - Isothermal

This example simulates the kinetics of precipitation of  $\gamma'$  phase from  $\gamma$  phase. The simulation results can be compared with experimental data collected from Sudbrack et al. (2008)<sup>1</sup>.

This example uses three Experimental File Reader activities with the Precipitation Calculator. It does an isothermal calculation to plot the volume fraction, mean radius and number density of the cementite phase.

# DIS\_FCC\_A1 needs to be selected on the System Definer. See Selecting the Disordered Phase as a Matrix Phase for details.

| System (System Definer) |                                                      |  |  |
|-------------------------|------------------------------------------------------|--|--|
| Database package        | Demo: Nickel-based Super Alloys (NIDEMO and MNIDEMO) |  |  |

<sup>&</sup>lt;sup>1.</sup> Sudbrack, Chantal K., Tiffany D. Ziebell, Ronald D. Noebe, and David N. Seidman. 2008. "Effects of a Tungsten Addition on the Morphological Evolution, Spatial Correlations and Temporal Evolution of a Model Ni–Al–Cr Superalloy." Acta Materialia 56 (3): 448–63.

| Elements                                                     | Ni, Al Cr                                                                   |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Conditions (Precipitation Calculator)                        |                                                                             |  |
| Composition                                                  | Ni-9.8Al-8.3Cr Mole percent                                                 |  |
| Matrix phase                                                 | DIS-FCC_A1 (see note above about how to select this phase)                  |  |
| Precipitate phase                                            | FCC_L12#2                                                                   |  |
| Precipitate Phase Data Parameters (Precipitation Calculator) |                                                                             |  |
| Nucleation sites                                             | Bulk                                                                        |  |
| Interfacial energy                                           | 0.012 J/m <sup>2</sup>                                                      |  |
| Calculation Type (Precipitation Calculator)                  |                                                                             |  |
| Calculation type                                             | Isothermal                                                                  |  |
| Temperature                                                  | 800° C                                                                      |  |
| Simulation time                                              | 1 000 000 seconds                                                           |  |
| Other                                                        |                                                                             |  |
|                                                              | Folder: Precipitation Module - TC-PRISMA                                    |  |
| File name and location                                       | File name: P_05_Precipitation_Ni-Al-Cr_Isothermal_Gamma-Gamma_<br>prime.tcu |  |

# **Plot Results**

Volume Fraction



#### Number Density


### Mean Radius



# *P\_06: Precipitation of* $\gamma'$ *in Ni Superalloys - Non-isothermal*

This example simulates the kinetics of precipitation of  $\gamma'$  phase from  $\gamma$  phase in Ni-8Al-8Cr and Ni-10Al-10Cr at.% alloys during continuous cooling. The simulation results can be compared with experimental results from Rojhirunsakool et al. (2013)<sup>1</sup>.



When you run (Perform) this example, it takes about 10 minutes for the calculations to complete.

In these examples a linear, continuously cooling condition is set up. This is done on the Precipitation Calculator settings window in the **Calculation Type** section:

- 1. Select a Non-Isothermal.
- 2. Select a **Temperature Unit** and **Time Unit** from the lists.
- 3. Click **Thermal Profile**, where **Time-Temperature** profile points are entered to describe the stepwise heat treatment schedule with linear segments. Up to 999 rows of data

<sup>&</sup>lt;sup>1.</sup> Rojhirunsakool, Tanaporn, S. Meher, J. Y. Hwang, S. Nag, J. Tiley, and Rajarshi Banerjee. 2013. "Influence of Composition on Monomodal versus Multimodal Γ' Precipitation in Ni–Al–Cr Alloys." Journal of Materials Science 48 (2): 825–31.

points can be entered.

In these examples two rows of data points are needed for starting time 0s and temperature 1150° C, as well as end time 3300s and temperature 380° C.

4. Click the **Plot Renderer** node to select the **Separate multimodal PSD** check box.

Plotting the size distribution from the final simulation time of 3300 seconds, you can see there are several peaks, although these are not completely separated. As above, select the **Separate multimodal PSD** check box to separate the peaks.

 Adjust the Valley depth ratio setting to 0.05 to separate into two peaks as shown in the <u>Ni-10Al-10Cr plot example</u>. You can experiment with this setting to see how the size distribution evolves with time, for example, try entering several values as plot times 400 600 3300.



DIS\_FCC\_A1 needs to be selected on the System Definer. See Selecting the Disordered Phase as a Matrix Phase for details.

| System (System Definer)                                                        |                                                            |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------|--|
| Database package                                                               | Demo: Nickel-based Super Alloys (NIDEMO and MNIDEMO)       |  |
| Elements                                                                       | Ni, Al, Cr                                                 |  |
| Conditions (Precipitation Calculator)                                          |                                                            |  |
| Composition (Ni-8Al-8Cr)                                                       | Ni-8Al-8Cr Mole percent                                    |  |
| Composition (Ni-10Al-10Cr)                                                     | Ni-10Al-10Cr Mole percent                                  |  |
| Matrix phase                                                                   | DIS_FCC_A1 (see note above about how to select this phase) |  |
| Precipitate phase                                                              | FCC_L12#2                                                  |  |
| Matrix Phase Data Parameters (Precipitation Calculator)                        |                                                            |  |
| Mobility enhancement prefactor (click<br>Show details to display this setting) | 5.0                                                        |  |
| Precipitate Phase Data Parameters (Precipitation Calculator)                   |                                                            |  |
| Nucleation sites                                                               | Bulk                                                       |  |

| Interfacial energy                          | 0.023 J/m <sup>2</sup>                                                                                                                   |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Calculation Type (Precipitation Calculator) |                                                                                                                                          |  |  |
| Calculation type                            | Non-isothermal                                                                                                                           |  |  |
| Temperature unit                            | Celsius                                                                                                                                  |  |  |
| Time unit                                   | Seconds                                                                                                                                  |  |  |
| Simulation time (Ni-8Al-8Cr)                | 1470 s                                                                                                                                   |  |  |
| Simulation time (Ni-10Al-10Cr)              | 3300 s                                                                                                                                   |  |  |
| Multimodal PSD (Plot Renderer)              | Multimodal PSD (Plot Renderer)                                                                                                           |  |  |
| Separate multimodal PSD for 8Al-8Cr         | The <b>Valley depth ratio</b> is set to 0.05 for both plots. The number of <b>Points</b> is increased to 200 for an average radius plot. |  |  |
| Separate multimodal PSD for 10Al-10Cr       | The Valley depth ratio is set to 0.18 for both plots.                                                                                    |  |  |
| Other                                       |                                                                                                                                          |  |  |
| File name and location                      | Folder: Precipitation Module - TC-PRISMA<br>File name: P_06_Precipitation_Ni-Al-Cr_Non-isothermal_Gamma-<br>Gamma_prime.tcu              |  |  |

Mean Radius Ni-8Al-8Cr



#### Mean Radius Ni-10Al-10CR



Size Distribution (PSD) Ni-8Al-8Cr



Size Distribution (PSD) Ni-10Al-10Cr



# P\_07: Continuous Cooling Transformation (CCT) Diagram of Ni-Al-Cr $\gamma$ - $\gamma$ '

In this example, a Continuous Cooling Transformation (CCT) diagram for a Ni-10Al-10Cr  $\gamma$ - $\gamma$ ' alloy is calculated and plotted with superimposition of the cooling rate values.

This example is available as a video tutorial on our website and YouTube channel.

| System (System Definer)                                                                                                                          |                                                                                                                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Database package                                                                                                                                 | Demo: Nickel-based Super Alloys (NIDEMO and MNIDEMO)                                                                                   |  |
| Elements                                                                                                                                         | Ni, Al, Cr                                                                                                                             |  |
| Conditions (Precipitation Calculator)                                                                                                            |                                                                                                                                        |  |
| Composition                                                                                                                                      | Ni-10Al-10Cr Mole percent                                                                                                              |  |
| Matrix phase                                                                                                                                     | DIS_FCC_A1                                                                                                                             |  |
| Precipitate phase                                                                                                                                | FCC_L12#2                                                                                                                              |  |
| Precipitate Phase Data Parameters (Precipitation Calculator)                                                                                     |                                                                                                                                        |  |
| Nucleation sites                                                                                                                                 | Bulk                                                                                                                                   |  |
|                                                                                                                                                  |                                                                                                                                        |  |
| Interfacial energy                                                                                                                               | 0.023 J/m <sup>2</sup>                                                                                                                 |  |
| Interfacial energy Calculation Type (Precipitatio                                                                                                | 0.023 J/m <sup>2</sup> n Calculator)                                                                                                   |  |
| Interfacial energy Calculation Type (Precipitatio Calculation type                                                                               | 0.023 J/m <sup>2</sup><br>n Calculator)<br>CCT Diagram                                                                                 |  |
| Interfacial energy Calculation Type (Precipitatio Calculation type Temperature Min to Max                                                        | 0.023 J/m <sup>2</sup><br>n Calculator)<br>CCT Diagram<br>500 to 1200 Kelvin                                                           |  |
| Interfacial energy Calculation Type (Precipitatio Calculation type Temperature Min to Max Cooling rate(s)                                        | 0.023 J/m <sup>2</sup><br>n Calculator)<br>CCT Diagram<br>500 to 1200 Kelvin<br>.01 .1 1 10 100 K/s                                    |  |
| Interfacial energy<br>Calculation Type (Precipitation<br>Calculation type<br>Temperature Min to Max<br>Cooling rate(s)<br>Stop criteria          | 0.023 J/m <sup>2</sup><br>n Calculator)<br>CCT Diagram<br>500 to 1200 Kelvin<br>.01 .1 1 10 100 K/s<br>Volume fraction of phase 1.0E-4 |  |
| Interfacial energy<br>Calculation Type (Precipitation<br>Calculation type<br>Temperature Min to Max<br>Cooling rate(s)<br>Stop criteria<br>Other | 0.023 J/m <sup>2</sup><br>n Calculator)<br>CCT Diagram<br>500 to 1200 Kelvin<br>.01 .1 1 10 100 K/s<br>Volume fraction of phase 1.0E-4 |  |

## Plot and Table Results



| Results                          |                  |  |
|----------------------------------|------------------|--|
| Plot Renderer 1 Table Renderer 1 |                  |  |
| Temperature [K]                  | FCC_L12#2 (Bulk) |  |
| 1147.52034                       | 0.53291          |  |
| 1151.74192                       | 4.83553          |  |
| 1155.24636                       | 44.76534         |  |
| 1158.85368                       | 411.49173        |  |
| 1161.48750                       | 3851.47779       |  |

# *P\_08: Precipitation of Cu-Ti CU4TI with Assumptions of Sphere and Needle Morphologies*

In this isothermal calculation example, the precipitation of Cu4Ti phase in a Cu-Ti binary alloy is calculated. To make a comparison, two separate simulations are performed, one assuming spherical morphology without elastic strain energy, and the other assuming needle morphology

whose shape, determined by competition between interfacial energy and elastic strain energy, is changed during the simulation. The transformation strain is obtained from Borchers<sup>1.</sup>. The results are compared with experiment results from Kampmann et al<sup>2.</sup>.

This example takes a few minutes to run.



To ensure that the settings are done on the correct Precipitation Calculators, the **Sphere** and **Needle** nodes are renamed from **Precipitation Calculator** to match their morphology. The morphology is set in the **Precipitate Phase** section when you click **Show details**.

## Precipitation Morphology



| System (System Definer)                                 |                                                |  |
|---------------------------------------------------------|------------------------------------------------|--|
| Database package                                        | Demo: Copper-based alloys (CUDEMO and MCUDEMO) |  |
| Elements                                                | Cu, Ti                                         |  |
| Sphere and Needle Conditions (Precipitation Calculator) |                                                |  |
| Composition                                             | Cu-1.9Ti Mole percent                          |  |
| Matrix phase                                            | FCC_L12                                        |  |

<sup>&</sup>lt;sup>1.</sup> Borchers C. 1999. "Catastrophic Nucleation during Decomposition of Cu-0.9at.%Ti." Phil. Mag. A 79(3):537-547

<sup>&</sup>lt;sup>2.</sup> Kampmann R., Eckerlebe H., and Wagner R. 1987. "Precipitation Kinetics in Metastab le Solid Solutions - Theoretical Considerations and Application to Cu-Ti Alloys." Mat. Res. Soc. Symp. Proc. 57: 525-542.

| Precipitate phase                                                                        | CU4TI1                                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Matrix Phase Data Parameters (Precipitation Calculator)                                  |                                                                                                                                                                                |  |
| Mobility enhancement<br>prefactor (click <b>Show details</b> to<br>display this setting) | 100                                                                                                                                                                            |  |
| Precipitate Phase Data Parameters (Precipitation Calculator)                             |                                                                                                                                                                                |  |
| Nucleation sites                                                                         | Bulk                                                                                                                                                                           |  |
| Interfacial energy                                                                       | The default                                                                                                                                                                    |  |
| Morphology (click <b>Show details</b>                                                    | For the <b>Sphere</b> node (renamed from Precipitation Calculator), keep the default.                                                                                          |  |
| to display this setting                                                                  | For the <b>Needle</b> node (renamed from Precipitation Calculator), <b>Needle</b> is selected.                                                                                 |  |
|                                                                                          | For the <b>Sphere</b> node (renamed from Precipitation Calculator), keep the default.                                                                                          |  |
| Transformation strain (click<br><b>Show details</b> to display this setting)             | For the <b>Needle</b> node (renamed from Precipitation Calculator), <b>User defined</b> is selected. In this example, the following settings are defined:                      |  |
| 50 (ding)                                                                                | <ul> <li>ε11 and ε22 are set to 0.022</li> <li>ε33 is set to 0.003</li> </ul>                                                                                                  |  |
| Calculation Type (Precipitation Calculator)                                              |                                                                                                                                                                                |  |
| Calculation type                                                                         | Isothermal                                                                                                                                                                     |  |
| Temperature                                                                              | 350° C                                                                                                                                                                         |  |
| Simulation time                                                                          | 10,000 seconds                                                                                                                                                                 |  |
| Datasets (Experimental File Reader)                                                      |                                                                                                                                                                                |  |
| Borchers Mean radius vs Time<br>and Borchers Number density<br>vs Time                   | Data sets included with this example and imported to two Experimental<br>File Readers. These data sets are used for the Mean Radius and Number<br>Density plots, respectively. |  |
| Other                                                                                    |                                                                                                                                                                                |  |
| File name and location                                                                   | Folder: Precipitation Module - TC-PRISMA                                                                                                                                       |  |

| File name: P. 08. Precipitation CulTi CUATI1 Sphere Needle tou |
|----------------------------------------------------------------|
|                                                                |
|                                                                |
|                                                                |

Mean Aspect Ratio



# Number Density



### PSD and ASD



#### Mean Radius



# *P\_09: Precipitation of Al-Sc AL3SC with Assumption of Sphere and Cuboid Morphologies*

In this isothermal calculation example, the precipitation of Al<sub>3</sub>Sc phase from FCC\_A1 matrix phase in an Al-Sc binary alloy is simulated. To make a comparison, two separate calculations are performed, one assuming spherical morphology without elastic strain energy, and the other assuming cuboid morphology whose shape is determined by competition between interfacial energy and elastic strain energy. The simulation results are compared with experimental data collected from Marquis and Seidman<sup>1.</sup> and Novotny and Ardell (2001)<sup>2.</sup> In addition, mean cubic factor and cubic factor distribution are also plotted for cuboid shape to illustrate the spherical-cuboidal transition during precipitation.

<sup>&</sup>lt;sup>1.</sup> Marquis, E.A, and D.N Seidman. 2001. "Nanoscale Structural Evolution of Al3Sc Precipitates in Al(Sc) Alloys." Acta Materialia 49 (11): 1909–19.

<sup>&</sup>lt;sup>2.</sup> Novotny, Gabriel M., and Alan J. Ardell. 2001. "Precipitation of Al3Sc in Binary Al–Sc Alloys." Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing 318 (1–2): 144–54.

To ensure that the settings are done on the correct Precipitation Calculators, the **Sphere** and **Cuboid** nodes are renamed from **Precipitation Calculator** to match their morphology. The morphology is set in the **Precipitate Phase** section when you click **Show details**. See P\_08 for an example of this.

This example is available as a video tutorial on our website and YouTube channel.

## Precipitation Morphology

| System (System Definer)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Database package                                                             | Demo: Aluminum-based alloys (ALDEMO, MALDEMO)                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Elements                                                                     | Al, Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Sphere and Cuboid Conditions (Precipitation Calculator)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Composition                                                                  | Al-0.18Sc Mole percent                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Matrix phase                                                                 | FCC_A1                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Precipitate phase                                                            | AL3SC                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Matrix Phase Data Parameters (Precipitation Calculator)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Elastic properties<br>(click <b>Show details</b> to<br>display this setting) | <ul> <li>For the Sphere node (renamed from Precipitation Calculator), the default, Disregard is kept.</li> <li>For the Cuboid node (renamed from Precipitation Calculator), choose Cubic. Then enter the elastic constants accordingly. Default elastic constants are given based on the major element of the alloy system. In this example that is <ul> <li>c11 is 108.2 GPa</li> <li>c12 is 61.3 GPa</li> <li>c44 is 28.5 GPa</li> </ul> </li> </ul> |  |
| Precipitate Phase Data Parameters (Precipitation Calculator)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Nucleation sites                                                             | Bulk                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Interfacial energy                                                           | The default                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Morphology (click<br><b>Show details</b> to<br>display this setting)         | For the <b>Sphere</b> node (renamed from Precipitation Calculator), keep the default.<br>For the <b>Cuboid</b> node (renamed from Precipitation Calculator), <b>Cuboid</b> is selected.                                                                                                                                                                                                                                                                |  |

| Transformation strain<br>(click <b>Show details</b> to<br>display this setting) | For the <b>Sphere</b> node (renamed from Precipitation Calculator), keep the default.<br>For the <b>Cuboid</b> node (renamed from Precipitation Calculator), <b>Calculate from molar</b><br><b>volume</b> is selected to obtain a purely dilatational strain. |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Calculation Type (Pre                                                           | Calculation Type (Precipitation Calculator)                                                                                                                                                                                                                   |  |  |
| Calculation type                                                                | Isothermal                                                                                                                                                                                                                                                    |  |  |
| Temperature                                                                     | 350° C                                                                                                                                                                                                                                                        |  |  |
| Simulation time                                                                 | 1.0E9 seconds                                                                                                                                                                                                                                                 |  |  |
| Datasets (Experimental File Reader)                                             |                                                                                                                                                                                                                                                               |  |  |
| Dataset 1 and Dataset 2                                                         | Data sets included with this example and imported to one Experimental File Reader.<br>It is used for the Mean Radius plot.                                                                                                                                    |  |  |
| Other                                                                           |                                                                                                                                                                                                                                                               |  |  |
| File name and location                                                          | Folder: Precipitation Module - TC-PRISMA<br>File name: P_09_Precipitation_Al-Sc_AL3SC_Sphere_Cuboid.tcu                                                                                                                                                       |  |  |

Mean Radius



PSD







## PSD and Cubic Factor



## P\_10: Initial Particle Size Distribution of Fe-Cr-C

This example demonstrates the effect of initial particle size distribution of the precipitate phases on the overall precipitation kinetics. It uses two Precipitation Calculators to simulate and compare carbide precipitations from a ferritic BCC\_A2 matrix in a Fe-0.1C-12Cr alloy. Three carbides, CEMENTITE, M23C6 and M7C3, are included in the calculations for competitive precipitations, and the precipitation kinetics are compared with or without initial particle size distribution.

The example illustrates the use of the particle size distribution setting. You can import data from a spreadsheet or text file (.xls, .xlsx, .csv or .txt formats are acceptable). The Preexisting Particle Size Distribution window shown below, provides a graphical representation of the radius versus corresponding frequencies.



| System (System Definer)                                      |                                                                                                      |  |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Database package                                             | Demo: Steels and Fe-alloys (FEDEMO and MFEDEMO)                                                      |  |
| Elements                                                     | Fe, C, Cr                                                                                            |  |
| Conditions (Precipitation Calculator)                        |                                                                                                      |  |
| Composition                                                  | Fe-0.1C-12Cr Mass percent                                                                            |  |
| Matrix phase                                                 | BCC_A2                                                                                               |  |
|                                                              | All other defaults are kept.                                                                         |  |
| Precipitate phases                                           | CEMENTITE, M23C6 and M7C3                                                                            |  |
| Precipitate Phase Data Parameters (Precipitation Calculator) |                                                                                                      |  |
| Nucleation sites                                             | Grain boundaries (all calculations): Calculated from the matrix settings with a wetting angle of 90° |  |
| Interfacial onergy                                           | User-defined function f(r,T) (all calculations):                                                     |  |
|                                                              | • CEMENTITE: 0.167 J/m <sup>2</sup>                                                                  |  |

|                                                                                                   | <ul> <li>M23C6 0.252 J/m<sup>2</sup></li> <li>M7C3 0.282 J/m<sup>2</sup></li> </ul>                                                                                                                                                                                                                                                                           |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Preexisting size<br>distribution (click <b>Show</b><br><b>details</b> to display this<br>setting) | For the Precipitation Calculator including particle size distribution, and for all precipitate phases, this check box is selected.<br>For each precipitate phase (CEMENTITE, M23C6 and M7C3), click <b>Edit particle size distribution</b> to make changes to the parameters. A window opens with a graphical representation of the radius vs number density. |  |
| Calculation Type (Precipitation Calculator)                                                       |                                                                                                                                                                                                                                                                                                                                                               |  |
| Calculation type                                                                                  | Isothermal                                                                                                                                                                                                                                                                                                                                                    |  |
| Temperature                                                                                       | 1053 К                                                                                                                                                                                                                                                                                                                                                        |  |
| Simulation time                                                                                   | 400 000 seconds                                                                                                                                                                                                                                                                                                                                               |  |
| Other                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |  |
| File name and location                                                                            | Folder: Precipitation Module - TC-PRISMA<br>File name: P_10_Precipitation_Initial_PSD_FeCrC.tcu                                                                                                                                                                                                                                                               |  |



Volume Fraction with Initial Particle Size Distribution



Volume Fraction with No Initial Particle Size Distribution

## P\_11: Interfacial Energy Function

In some cases, interfacial energy may be a function of temperature and/or particle radius. This example uses four Precipitation Calculators at four temperature points in 30 K increments: 673 K, 703 K, 733 K, and 763 K. It is an isothermal calculation to examine the mean radius of an Al-0.12Sc system. It uses an FCC\_A1 matrix phase and AL3SC precipitate phase with bulk nucleation sites and user-defined interfacial energy function. The user defined interfacial energy function uses an error function to set a smooth transition of the interfacial energy from 0.065 J/m<sup>2</sup> to 0.085 J/m<sup>2</sup> for particle radii below and above 1e<sup>-8</sup>m and 5e<sup>-8</sup>m, respectively.

A dataset based on Iwamura and Miura (<sup>1.</sup>) data is compared with the calculated results.

| System (System Definer) |                                               |
|-------------------------|-----------------------------------------------|
| Database package        | Demo: Aluminum-based Alloys (ALDEMO, MALDEMO) |

<sup>&</sup>lt;sup>1.</sup> Iwamura, S, and Y Miura. 2004. "Loss in Coherency and Coarsening Behavior of Al3Sc Precipitates." Acta Materialia 52 (3): 591–600.

| Elements                                    | Al, Sc                                                                                                                                                                                                      |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Conditions (Precipitation Calculator)       |                                                                                                                                                                                                             |  |
| Composition                                 | Al-0.12Sc Mole percent                                                                                                                                                                                      |  |
| Matrix phase                                | FCC_A1<br>All other defaults are kept.                                                                                                                                                                      |  |
| Precipitate phase                           | AL3SC<br>Nucleation sites (all calculations): Bulk (6.025E28 m <sup>-3</sup> )<br>Interfacial energy (all calculations): User-defined function f(r,T): 0.075+0.011*erf((r-<br>3e-8)/1e-8 J/m <sup>2</sup> ) |  |
| Calculation Type (Precipitation Calculator) |                                                                                                                                                                                                             |  |
| Calculation type                            | Isothermal (all calculations)                                                                                                                                                                               |  |
| Temperature                                 | Four temperature points in 30 K increments: 673 K, 703 K, 733 K, and 763 K.                                                                                                                                 |  |
| Simulation time                             | 1 000 000 seconds (all calculations)                                                                                                                                                                        |  |
| Datasets (Experimental File Reader)         |                                                                                                                                                                                                             |  |
| Wamura 2004<br>(Dataset 1)                  | Data set included with this example and imported to one Experimental File Reader.                                                                                                                           |  |
| Other                                       |                                                                                                                                                                                                             |  |
| File name and location                      | Folder: Precipitation Module - TC-PRISMA<br>File name: P_11_Interfacial_energy_function.tcu                                                                                                                 |  |

#### Mean Radius



## P\_11: Interfacial Energy Function

In some cases, interfacial energy may be a function of temperature and/or particle radius. This example uses four Precipitation Calculators at four temperature points in 30 K increments: 673 K, 703 K, 733 K, and 763 K. It is an isothermal calculation to examine the mean radius of an Al-0.12Sc system. It uses an FCC\_A1 matrix phase and AL3SC precipitate phase with bulk nucleation sites and user-defined interfacial energy function. The user defined interfacial energy function uses an error function to set a smooth transition of the interfacial energy from 0.065 J/m<sup>2</sup> to 0.085 J/m<sup>2</sup> for particle radii below and above 1e<sup>-8</sup>m and 5e<sup>-8</sup>m, respectively.

A dataset based on Iwamura and Miura (<sup>1</sup>) data is compared with the calculated results.



<sup>&</sup>lt;sup>1.</sup> Iwamura, S, and Y Miura. 2004. "Loss in Coherency and Coarsening Behavior of Al3Sc Precipitates." Acta Materialia 52 (3): 591–600.

| Elements                                    | Al, Sc                                                                                                                                                                                                      |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Conditions (Precipitation Calculator)       |                                                                                                                                                                                                             |  |
| Composition                                 | Al-0.12Sc Mole percent                                                                                                                                                                                      |  |
| Matrix phase                                | FCC_A1<br>All other defaults are kept.                                                                                                                                                                      |  |
| Precipitate phase                           | AL3SC<br>Nucleation sites (all calculations): Bulk (6.025E28 m <sup>-3</sup> )<br>Interfacial energy (all calculations): User-defined function f(r,T): 0.075+0.011*erf((r-<br>3e-8)/1e-8 J/m <sup>2</sup> ) |  |
| Calculation Type (Precipitation Calculator) |                                                                                                                                                                                                             |  |
| Calculation type                            | Isothermal (all calculations)                                                                                                                                                                               |  |
| Temperature                                 | Four temperature points in 30 K increments: 673 K, 703 K, 733 K, and 763 K.                                                                                                                                 |  |
| Simulation time                             | 1 000 000 seconds (all calculations)                                                                                                                                                                        |  |
| Datasets (Experimental File Reader)         |                                                                                                                                                                                                             |  |
| Wamura 2004<br>(Dataset 1)                  | Data set included with this example and imported to one Experimental File Reader.                                                                                                                           |  |
| Other                                       |                                                                                                                                                                                                             |  |
| File name and location                      | Folder: Precipitation Module - TC-PRISMA<br>File name: P_11_Interfacial_energy_function.tcu                                                                                                                 |  |

#### Mean Radius



## P\_12: Comparing Growth Rate Models for an Al-Zr System

This example compares the **Simplified**, **General** and **Advanced** growth rate models for an Al-Zr system. The resulting plot compares the mean radius of the spheres for each AL3ZR\_D023 precipitate phase calculated for each type of growth rate model.





The example takes several minutes to run.

All models treat a spherical particle (precipitate) of stoichiometric composition or with negligible atomic diffusivity. Local equilibrium at the precipitate-matrix interface is assumed.

When you use the *Advanced* model, the velocity of a moving phase interface and the operating tie-line are solved together from flux-balance equations. This model can treat both high supersaturation and cross diffusion rigorously. It can also capture the transition between NPLE (non-partitioning local equilibrium) and PLE (partitioning local equilibrium) without any *ad hoc* treatment.

The *Simplified* model is based on the quasi-steady state diffusion approximation, and estimates solute partitioning with matrix composition and nuclei composition instead of time-consuming stepwise tie-line calculations. It also neglects cross diffusion for simplicity.

The *General* model can be considered the same theoretical approximation as, but an improvement over, the *Simplified* model, with cross-diffusion terms taken into account, as well as adjustment of Gibbs-Thomson effect and effective diffusivity implemented.

| System (System Definer)                     |                                                                                                                        |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Database<br>package                         | Demo: Aluminum-based Alloys (ALDEMO, MALDEMO)                                                                          |  |
| Elements                                    | Al, Zr                                                                                                                 |  |
| Conditions (Precipitation Calculator)       |                                                                                                                        |  |
| Composition                                 | Al-0.2Zr Mole percent                                                                                                  |  |
| Matrix phase                                | FCC_A1                                                                                                                 |  |
|                                             | All other defaults are kept.                                                                                           |  |
| Precipitate<br>phase                        | AL3ZR_D023                                                                                                             |  |
|                                             | Click Show details to select the Growth rate model (Simplified, Advanced and General).<br>All other defaults are kept. |  |
| Calculation Type (Precipitation Calculator) |                                                                                                                        |  |
| Calculation type                            | Isothermal                                                                                                             |  |
| Temperature                                 | 425 Celsius                                                                                                            |  |
| Simulation time                             | 400 hours                                                                                                              |  |
| Datasets (Experimental File Reader)         |                                                                                                                        |  |
| 2008 Knipling                               | Data set included with this example and imported to one Experimental File Reader.                                      |  |

#### Mean Radius

